DSPIC30F3013-30I/SO Microchip Technology, DSPIC30F3013-30I/SO Datasheet - Page 46

IC DSPIC MCU/DSP 24K 28SOIC

DSPIC30F3013-30I/SO

Manufacturer Part Number
DSPIC30F3013-30I/SO
Description
IC DSPIC MCU/DSP 24K 28SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F3013-30I/SO

Program Memory Type
FLASH
Program Memory Size
24KB (8K x 24)
Package / Case
28-SOIC (7.5mm Width)
Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
20
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 10x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
30 MHz
Number Of Programmable I/os
30
Data Ram Size
2 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300018, DM330011
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28SO-1 - SOCKET TRANSITION 28SOIC 300MILDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F301330ISO

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F3013-30I/SO
Manufacturer:
NSC
Quantity:
340
Part Number:
DSPIC30F3013-30I/SO
Manufacturer:
PIC
Quantity:
20 000
dsPIC30F2011/2012/3012/3013
4.2.3
Modulo Addressing can be applied to the Effective
Address (EA) calculation associated with any W
register. It is important to realize that the address
boundaries check for addresses less than, or greater
than the upper (for incrementing buffers), and lower (for
decrementing buffers) boundary addresses (not just
equal to). Address changes may, therefore, jump
beyond boundaries and still be adjusted correctly.
4.3
Bit-Reversed Addressing is intended to simplify data
re-ordering for radix-2 FFT algorithms. It is supported
by the X AGU for data writes only.
The modifier, which may be a constant value or register
contents, is regarded as having its bit order reversed. The
address source and destination are kept in normal order.
Thus, the only operand requiring reversal is the modifier.
4.3.1
Bit-Reversed Addressing is enabled when:
• BWM (W register selection) in the MODCON reg-
• The BREN bit is set in the XBREV register
• The addressing mode used is Register Indirect
DS70139G-page 46
Note:
ister is any value other than ‘15’ (the stack cannot
be accessed using Bit-Reversed Addressing)
with Pre-Increment or Post-Increment.
and
and
Bit-Reversed Addressing
MODULO ADDRESSING
APPLICABILITY
The modulo corrected Effective Address
is written back to the register only when
Pre-Modify or Post-Modify Addressing
mode is used to compute the EA. When
an address offset (e.g., [W7+W2]) is used,
Modulo address correction is performed,
but the contents of the register remain
unchanged.
BIT-REVERSED ADDRESSING
IMPLEMENTATION
If the length of a bit-reversed buffer is M = 2
then the last ‘N’ bits of the data buffer Start address
must be zeros.
XB<14:0> is the bit-reversed address modifier or ‘pivot
point’ which is typically a constant. In the case of an
FFT computation, its value is equal to half of the FFT
data buffer size.
When enabled, Bit-Reversed Addressing is only
executed for register indirect with pre-increment or
post-increment addressing and word-sized data writes.
It does not function for any other addressing mode or
for byte-sized data. Normal addresses are generated
instead. When Bit-Reversed Addressing is active, the
W address pointer is always added to the address
modifier (XB) and the offset associated with the
Register Indirect Addressing mode is ignored. In
addition, as word-sized data is a requirement, the LSb
of the EA is ignored (and always clear).
If Bit-Reversed Addressing has already been enabled
by setting the BREN bit (XBREV<15>), then a write to
the XBREV register should not be immediately followed
by an indirect read operation using the W register that
has been designated as the bit-reversed pointer.
Note:
Note:
All bit-reversed EA calculations assume
word-sized data (LSb of every EA is
always clear). The XB value is scaled
accordingly to generate compatible (byte)
addresses.
Modulo Addressing and Bit-Reversed
Addressing
together. In the event that the user
attempts to do this, Bit-Reversed Address-
ing assumes priority when active for the X
WAGU, and X WAGU Modulo Addressing
is disabled. However, Modulo Addressing
continues to function in the X RAGU.
© 2010 Microchip Technology Inc.
should
not
be
enabled
N
bytes,

Related parts for DSPIC30F3013-30I/SO