DSPIC30F3013-30I/SO Microchip Technology, DSPIC30F3013-30I/SO Datasheet - Page 74

IC DSPIC MCU/DSP 24K 28SOIC

DSPIC30F3013-30I/SO

Manufacturer Part Number
DSPIC30F3013-30I/SO
Description
IC DSPIC MCU/DSP 24K 28SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F3013-30I/SO

Program Memory Type
FLASH
Program Memory Size
24KB (8K x 24)
Package / Case
28-SOIC (7.5mm Width)
Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
20
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 10x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
30 MHz
Number Of Programmable I/os
30
Data Ram Size
2 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300018, DM330011
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28SO-1 - SOCKET TRANSITION 28SOIC 300MILDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F301330ISO

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F3013-30I/SO
Manufacturer:
NSC
Quantity:
340
Part Number:
DSPIC30F3013-30I/SO
Manufacturer:
PIC
Quantity:
20 000
controller.
dsPIC30F2011/2012/3012/3013
9.1
The 16-bit timer can be placed in the Gated Time
Accumulation mode. This mode allows the internal T
to increment the respective timer when the gate input
signal (T1CK pin) is asserted high. Control bit,
TGATE (T1CON<6>), must be set to enable this mode.
The timer must be enabled (TON = 1) and the timer
clock source set to internal (TCS = 0).
When the CPU goes into Idle mode, the timer stops
incrementing unless TSIDL = 0. If TSIDL = 1, the timer
resumes the incrementing sequence upon termination
of the CPU Idle mode.
9.2
The input clock (F
Timer has a prescale option of 1:1, 1:8, 1:64 and 1:256,
selected by control bits, TCKPS<1:0> (T1CON<5:4>).
The prescaler counter is cleared when any of the
following occurs:
• A write to the TMR1 register
• A write to the T1CON register
• A device Reset, such as a POR and BOR
However, if the timer is disabled (TON = 0), then the
timer prescaler cannot be reset since the prescaler
clock is halted.
The TMR1 register is not cleared when the T1CON
register is written. It is cleared by writing to the TMR1
register.
9.3
The timer operates during CPU Sleep mode, if:
• The timer module is enabled (TON = 1), and
• The timer clock source is selected as external
• The TSYNC bit (T1CON<2>) is asserted to a logic
When all three conditions are true, the timer continues
to count up to the Period register and be reset to
0x0000.
When a match between the timer and the Period
register occurs, an interrupt can be generated if the
respective timer interrupt enable bit is asserted.
9.4
The 16-bit timer has the ability to generate an
interrupt-on-period match. When the timer count
matches the Period register, the T1IF bit is asserted and
an interrupt is generated, if enabled. The T1IF bit must be
cleared in software. The timer interrupt flag, T1IF, is
located in the IFS0 Control register in the interrupt
DS70139G-page 74
(TCS = 1), and
‘0’ which defines the external clock source as
asynchronous.
Timer Gate Operation
Timer Prescaler
Timer Operation During Sleep Mode
Timer Interrupt
OSC
/4 or external clock) to the 16-bit
CY
When the Gated Time Accumulation mode is enabled,
an interrupt is also generated on the falling edge of the
gate signal (at the end of the accumulation cycle).
Enabling an interrupt is accomplished via the
respective timer interrupt enable bit, T1IE. The timer
interrupt enable bit is located in the IEC0 Control
register in the interrupt controller.
9.5
Timer1, when operating in Real-Time Clock (RTC)
mode, provides time of day and event time-stamping
capabilities. Key operational features of the RTC are:
• Operation from 32 kHz LP oscillator
• 8-bit prescaler
• Low power
• Real-Time Clock interrupts
These operating modes are determined by setting the
appropriate bit(s) in the T1CON register.
FIGURE 9-2:
9.5.1
When the TON = 1, TCS = 1 and TGATE = 0, the timer
increments on the rising edge of the 32 kHz LP oscilla-
tor output signal, up to the value specified in the Period
register and is then reset to ‘0’.
The TSYNC bit must be asserted to a logic ‘0’
(Asynchronous mode) for correct operation.
Enabling the LPOSCEN bit (OSCCON<1>) disables
the normal Timer and Counter modes and enables a
timer carry-out wake-up event.
When the CPU enters Sleep mode, the RTC continues
to operate, provided the 32 kHz external crystal
oscillator is active and the control bits have not been
changed. The TSIDL bit should be cleared to ‘0’ in
order for RTC to continue operation in Idle mode.
9.5.2
When an interrupt event occurs, the respective interrupt
flag, T1IF, is asserted and an interrupt is generated if
enabled. The T1IF bit must be cleared in software. The
respective Timer interrupt flag, T1IF, is located in the
IFS0 register in the interrupt controller.
C1 = C2 = 18 pF; R = 100K
C1
C2
Real-Time Clock
RTC OSCILLATOR OPERATION
RTC INTERRUPTS
32.768 kHz
XTAL
R
RECOMMENDED
COMPONENTS FOR
TIMER1 LP OSCILLATOR
RTC
© 2010 Microchip Technology Inc.
SOSCI
SOSCO
dsPIC30FXXXX

Related parts for DSPIC30F3013-30I/SO