ATMEGA32A-PU Atmel, ATMEGA32A-PU Datasheet - Page 25

MCU AVR 32K FLASH 16MHZ 40-PDIP

ATMEGA32A-PU

Manufacturer Part Number
ATMEGA32A-PU
Description
MCU AVR 32K FLASH 16MHZ 40-PDIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32A-PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
40PDIP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Data Rom Size
1024 B
Height
4.83 mm
Length
52.58 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
13.97 mm
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
1KB
Ram Memory Size
2KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600 - DEV KIT FOR AVR/AVR32ATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32A-PU
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATMEGA32A-PU
Manufacturer:
Atmel
Quantity:
26 792
8. System Clock and Clock Options
8.1
8.1.1
8.1.2
8155C–AVR–02/11
Clock Systems and their Distribution
CPU Clock – clk
I/O Clock – clk
I/O
Figure 8-1
need not be active at a given time. In order to reduce power consumption, the clocks to modules
not being used can be halted by using different sleep modes, as described in
ment and Sleep Modes” on page
Figure 8-1.
The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.
The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.
The I/O clock is also used by the External Interrupt module, but note that some external inter-
rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O
clock is halted. Also note that address recognition in the TWI module is carried out asynchro-
nously when clk
CPU
Timer/Counter
Timer/Counter
Asynchronous
Oscillator
presents the principal clock systems in the AVR and their distribution. All of the clocks
Clock Distribution
I/O
is halted, enabling TWI address reception in all sleep modes.
General I/O
Modules
External RC
Oscillator
clk
clk
ASY
I/O
33. The clock systems are detailed
External Clock
ADC
Control Unit
AVR Clock
Multiplexer
clk
Clock
ADC
Source Clock
CPU Core
clk
Oscillator
clk
Crystal
CPU
Reset Logic
FLASH
Watchdog Clock
Crystal Oscillator
RAM
Low-frequency
Watchdog Timer
Figure
Watchdog
Oscillator
ATmega32A
8-1.
Flash and
EEPROM
““Power Manage-
Calibrated RC
Oscillator
25

Related parts for ATMEGA32A-PU