DSPIC30F4013-30I/PT Microchip Technology, DSPIC30F4013-30I/PT Datasheet - Page 155

IC DSPIC MCU/DSP 48K 44TQFP

DSPIC30F4013-30I/PT

Manufacturer Part Number
DSPIC30F4013-30I/PT
Description
IC DSPIC MCU/DSP 48K 44TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F4013-30I/PT

Program Memory Type
FLASH
Package / Case
44-TQFP, 44-VQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, I²S, POR, PWM, WDT
Number Of I /o
30
Program Memory Size
48KB (16K x 24)
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 13x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
40 MHz
Operating Supply Voltage
2.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Data Rom Size
1024 B
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300018, DM330011
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT44PT3 - SOCKET TRAN ICE 44MQFP/TQFPAC30F006 - MODULE SKT FOR DSPIC30F 44TQFPAC164305 - MODULE SKT FOR PM3 44TQFPDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F401330IPT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
MICROCHIP
Quantity:
1 600
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
MICR0CHIP
Quantity:
20 000
20.5
20.5.1
The primary function of the Watchdog Timer (WDT) is
to reset the processor in the event of a software mal-
function. The WDT is a free-running timer that runs off
an on-chip RC oscillator, requiring no external compo-
nent. Therefore, the WDT timer continues to operate
even if the main processor clock (e.g., the crystal
oscillator) fails.
20.5.2
The Watchdog Timer can be “Enabled” or “Disabled”
only through a Configuration bit (FWDTEN) in the
Configuration register, FWDT.
Setting FWDTEN = 1 enables the Watchdog Timer. The
enabling is done when programming the device. By
default, after chip erase, FWDTEN bit = 1. Any device
programmer capable of programming dsPIC30F
devices allows programming of this and other
Configuration bits.
If enabled, the WDT increments until it overflows or
“times out”. A WDT time-out forces a device Reset
(except during Sleep). To prevent a WDT time-out, the
user must clear the Watchdog Timer using a CLRWDT
instruction.
If a WDT times out during Sleep, the device wakes up.
The WDTO bit in the RCON register is cleared to
indicate a wake-up resulting from a WDT time-out.
Setting FWDTEN = 0 allows user software to enable/
disable the Watchdog Timer via the SWDTEN
(RCON<5>) control bit.
20.6
The Low-Voltage Detect (LVD) module is used to
detect when the V
threshold value, V
LVDL<3:0> bits (RCON<11:8>) and is thus user pro-
grammable. The internal voltage reference circuitry
requires a nominal amount of time to stabilize, and the
BGST bit (RCON<13>) indicates when the voltage
reference has stabilized.
In some devices, the LVD threshold voltage may be
applied externally on the LVDIN pin.
The LVD module is enabled by setting the LVDEN bit
(RCON<12>).
 2010 Microchip Technology Inc.
Watchdog Timer (WDT)
Low-Voltage Detect
WATCHDOG TIMER OPERATION
ENABLING AND DISABLING
THE WDT
LVD
DD
, which is determined by the
of the device drops below a
20.7
There are two power-saving states that can be entered
through the execution of a special instruction, PWRSAV;
these are Sleep and Idle.
The format of the PWRSAV instruction is as follows:
PWRSAV <parameter>, where ‘parameter’ defines
Idle or Sleep mode.
20.7.1
In Sleep mode, the clock to the CPU and peripherals is
shut down. If an on-chip oscillator is being used, it is
shut down.
The Fail-Safe Clock Monitor is not functional during
Sleep since there is no clock to monitor. However, the
LPRC clock remains active if WDT is operational during
Sleep.
The brown-out protection circuit and the Low-Voltage
Detect (LVD) circuit, if enabled, remains functional
during Sleep.
The processor wakes up from Sleep if at least one of
the following conditions has occurred:
• any interrupt that is individually enabled and
• any Reset (POR, BOR and MCLR)
• WDT time-out
On waking up from Sleep mode, the processor restarts
the same clock that was active prior to entry into Sleep
mode. When clock switching is enabled, bits,
COSC<2:0>, determine the oscillator source to be
used on wake-up. If clock switch is disabled, then there
is only one system clock.
If the clock source is an oscillator, the clock to the
device is held off until OST times out (indicating a
stable oscillator). If PLL is used, the system clock is
held off until LOCK = 1 (indicating that the PLL is
stable). In either case, T
are applied.
If EC, FRC, LPRC or ERC oscillators are used, then a
delay of T
delay possible on wake-up from Sleep.
Moreover, if the LP oscillator was active during Sleep
and LP is the oscillator used on wake-up, then the start-
up delay is equal to T
delay are not applied. In order to have the smallest
possible start-up delay when waking up from Sleep,
one of these faster wake-up options should be selected
before entering Sleep.
meets the required priority level
Note:
dsPIC30F3014/4013
Power-Saving Modes
POR
SLEEP MODE
If a POR or BOR occurred, the selection of
the oscillator is based on the FOS<2:0>
and FPR<4:0> Configuration bits.
(~ 10 s) is applied. This is the smallest
POR
POR
. PWRT delay and OST timer
, T
LOCK
DS70138G-page 155
and T
PWRT
delays

Related parts for DSPIC30F4013-30I/PT