DSPIC30F4013-20I/PT Microchip Technology, DSPIC30F4013-20I/PT Datasheet - Page 117

IC DSPIC MCU/DSP 48K 44TQFP

DSPIC30F4013-20I/PT

Manufacturer Part Number
DSPIC30F4013-20I/PT
Description
IC DSPIC MCU/DSP 48K 44TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F4013-20I/PT

Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, I²S, POR, PWM, WDT
Number Of I /o
30
Program Memory Size
48KB (16K x 24)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 13x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-TQFP, 44-VQFP
Core Frequency
40MHz
Core Supply Voltage
5.5V
Embedded Interface Type
CAN, I2C, SPI, UART
No. Of I/o's
30
Flash Memory Size
48KB
Supply Voltage Range
2.5V To 5.5V
Package
44TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
20 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
30
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
13-chx12-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT44PT3 - SOCKET TRAN ICE 44MQFP/TQFPAC30F006 - MODULE SKT FOR DSPIC30F 44TQFPAC164305 - MODULE SKT FOR PM3 44TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
Other names
DSPIC30F401320IPT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F4013-20I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013-20I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
17.6.2
There is a programmable prescaler with integral values
ranging from 1 to 64 in addition to a fixed divide-by-2 for
clock generation. The Time Quantum (T
unit of time derived from the oscillator period, shown in
Equation
is set) or 4F
EQUATION 17-1:
17.6.3
This part of the bit time is used to compensate physical
delay times within the network. These delay times con-
sist of the signal propagation time on the bus line and
the internal delay time of the nodes. The propagation
segment can be programmed from 1 T
setting the PRSEG<2:0> bits (CiCFG2<2:0>).
17.6.4
The phase segments are used to optimally locate the
sampling of the received bit within the transmitted bit
time. The sampling point is between Phase1 Seg and
Phase2 Seg. These segments are lengthened or short-
ened by resynchronization. The end of the Phase1 Seg
determines the sampling point within a bit period. The
segment is programmable from 1 T
Seg provides delay to the next transmitted data transi-
tion. The segment is programmable from 1 T
or it may be defined to be equal to the greater of
Phase1 Seg or the information processing time (2 T
The Phase1 Seg is initialized by setting bits
SEG1PH<2:0> (CiCFG2<5:3>), and Phase2 Seg is
initialized by setting SEG2PH<2:0> (CiCFG2<10:8>).
The following requirement must be fulfilled while setting
the lengths of the phase segments:
 2010 Microchip Technology Inc.
Note:
Prop Seg + Phase1 Seg > = Phase2 Seg
17-1, where F
PROPAGATION SEGMENT
PRESCALER SETTING
F
CANCKS = 0, then F
7.5 MHz.
PHASE SEGMENTS
CY
T
CAN
Q
(if CANCKS is clear).
= 2 (BRP<5:0> + 1)/F
must not exceed 30 MHz. If
TIME QUANTUM FOR
CLOCK GENERATION
CAN
is F
CY
CY
(if the CANCKS bit
Q
CAN
must not exceed
to 8 T
Q
Q
) is a fixed
to 8 T
Q
Q
. Phase2
to 8 T
Q
Q
by
Q
).
,
17.6.5
The sample point is the point of time at which the bus
level is read and interpreted as the value of that respec-
tive bit. The location is at the end of Phase1 Seg. If the
bit timing is slow and contains many T
specify multiple sampling of the bus line at the sample
point. The level determined by the CAN bus then corre-
sponds to the result from the majority decision of three
values. The majority samples are taken at the sample
point and twice before with a distance of T
CAN module allows the user to choose between
sampling three times at the same point, or once at the
same point by setting or clearing the SAM bit
(CiCFG2<6>).
Typically, the sampling of the bit should take place at
about 60-70% through the bit time depending on the
system parameters.
17.6.6
To compensate for phase shifts between the oscillator
frequencies of the different bus stations, each CAN
controller must be able to synchronize to the relevant
signal edge of the incoming signal. When an edge in
the transmitted data is detected, the logic compares the
location of the edge to the expected time (synchronous
segment). The circuit then adjusts the values of
Phase1 Seg and Phase2 Seg. There are two
mechanisms used to synchronize.
17.6.6.1
Hard synchronization is only done when there is a
recessive to dominant edge during bus Idle, indicating
the start of a message. After hard synchronization, the
bit-time counters are restarted with the synchronous
segment. Hard synchronization forces the edge which
has caused the hard synchronization to lie within the
synchronization segment of the restarted bit time. If a
hard synchronization is done, there will not be a
resynchronization within that bit time.
17.6.6.2
As a result of resynchronization, Phase1 Seg may be
lengthened or Phase2 Seg may be shortened. The
amount of lengthening or shortening of the phase buf-
fer segment has an upper bound known as the syn-
chronization jump width, and is specified by the
SJW<1:0> bits (CiCFG1<7:6>). The value of the
synchronization jump width is added to Phase1 Seg or
subtracted from Phase2 Seg. The resynchronization
jump width is programmable between 1 T
The following requirement must be fulfilled while setting
the SJW<1:0> bits:
dsPIC30F3014/4013
Phase2 Seg > Synchronization Jump Width
SAMPLE POINT
SYNCHRONIZATION
Hard Synchronization
Resynchronization
DS70138G-page 117
Q
, it is possible to
Q
and 4 T
Q
/2. The
Q
.

Related parts for DSPIC30F4013-20I/PT