DSPIC30F4013-20I/PT Microchip Technology, DSPIC30F4013-20I/PT Datasheet - Page 82

IC DSPIC MCU/DSP 48K 44TQFP

DSPIC30F4013-20I/PT

Manufacturer Part Number
DSPIC30F4013-20I/PT
Description
IC DSPIC MCU/DSP 48K 44TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F4013-20I/PT

Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, I²S, POR, PWM, WDT
Number Of I /o
30
Program Memory Size
48KB (16K x 24)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 13x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-TQFP, 44-VQFP
Core Frequency
40MHz
Core Supply Voltage
5.5V
Embedded Interface Type
CAN, I2C, SPI, UART
No. Of I/o's
30
Flash Memory Size
48KB
Supply Voltage Range
2.5V To 5.5V
Package
44TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
20 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
30
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
13-chx12-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT44PT3 - SOCKET TRAN ICE 44MQFP/TQFPAC30F006 - MODULE SKT FOR DSPIC30F 44TQFPAC164305 - MODULE SKT FOR PM3 44TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
Other names
DSPIC30F401320IPT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F4013-20I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013-20I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
dsPIC30F3014/4013
12.1.2
Each capture channel has an associated FIFO buffer
which is four 16-bit words deep. There are two status
flags which provide status on the FIFO buffer:
• ICBNE – Input Capture Buffer Not Empty
• ICOV – Input Capture Overflow
The ICBFNE is set on the first input capture event and
remain set until all capture events have been read from
the FIFO. As each word is read from the FIFO, the
remaining words are advanced by one position within
the buffer.
In the event that the FIFO is full with four capture
events and a fifth capture event occurs prior to a read
of the FIFO, an overflow condition occurs and the ICOV
bit is set to a logic ‘1’. The fifth capture event is lost and
is not stored in the FIFO. No additional events are
captured until all four events have been read from the
buffer.
If a FIFO read is performed after the last read and no
new capture event has been received, the read will
yield indeterminate results.
12.1.3
The input capture module consists of up to 8 input cap-
ture channels. Each channel can select between one of
two timers for the time base, Timer2 or Timer3.
Selection of the timer resource is accomplished
through SFR bit, ICTMR (ICxCON<7>). Timer3 is the
default timer resource available for the input capture
module.
12.1.4
When the input capture module is set for capture on
every edge, rising and falling, ICM<2:0> = 001, the
following operations are performed by the input capture
logic:
• The input capture interrupt flag is set on every
• The interrupt on Capture mode setting bits,
• A capture overflow condition is not generated in
DS70138G-page 82
edge, rising and falling.
ICI<1:0>, is ignored since every capture
generates an interrupt.
this mode.
CAPTURE BUFFER OPERATION
TIMER2 AND TIMER3 SELECTION
MODE
HALL SENSOR MODE
interrupts.
12.2
An input capture event generates a device wake-up or
interrupt, if enabled, if the device is in CPU Idle or Sleep
mode.
Independent of the timer being enabled, the input cap-
ture module wakes up from the CPU Sleep or Idle mode
when a capture event occurs if ICM<2:0> = 111 and the
interrupt enable bit is asserted. The same wake-up can
generate an interrupt if the conditions for processing the
interrupt have been satisfied. The wake-up feature is
useful as a method of adding extra external pin
12.2.1
CPU Sleep mode allows input capture module opera-
tion with reduced functionality. In the CPU Sleep mode,
the ICI<1:0> bits are not applicable and the input cap-
ture module can only function as an external interrupt
source.
The capture module must be configured for interrupt
only on rising edge (ICM<2:0> = 111) in order for the
input capture module to be used while the device is in
Sleep mode. The prescale settings of 4:1 or 16:1 are
not applicable in this mode.
12.2.2
CPU Idle mode allows input capture module operation
with full functionality. In the CPU Idle mode, the Inter-
rupt mode selected by the ICI<1:0> bits is applicable,
as well as the 4:1 and 16:1 capture prescale settings
which are defined by control bits, ICM<2:0>. This mode
requires the selected timer to be enabled. Moreover,
the ICSIDL bit must be asserted to a logic ‘0’.
If
ICM<2:0> = 111 in CPU Idle mode, the input capture
pin serves only as an external interrupt pin.
12.3
The input capture channels have the ability to generate
an interrupt based upon the selected number of
capture events. The selection number is set by control
bits, ICI<1:0> (ICxCON<6:5>).
Each channel provides an interrupt flag (ICxIF) bit. The
respective capture channel interrupt flag is located in
the corresponding IFSx register.
Enabling an interrupt is accomplished via the respec-
tive Input Capture Channel Interrupt Enable (ICxIE) bit.
The capture interrupt enable bit is located in the
corresponding IEC Control register.
the
Input Capture Operation During
Sleep and Idle Modes
Input Capture Interrupts
input
INPUT CAPTURE IN CPU SLEEP
MODE
INPUT CAPTURE IN CPU IDLE
MODE
capture
 2010 Microchip Technology Inc.
module
is
defined
as

Related parts for DSPIC30F4013-20I/PT