IC DSPIC MCU/DSP 128K 100-TQFP

DSPIC33FJ128GP310A-I/PT

Manufacturer Part NumberDSPIC33FJ128GP310A-I/PT
DescriptionIC DSPIC MCU/DSP 128K 100-TQFP
ManufacturerMicrochip Technology
SeriesdsPIC™ 33F
DSPIC33FJ128GP310A-I/PT datasheet
 

Specifications of DSPIC33FJ128GP310A-I/PT

Program Memory TypeFLASHProgram Memory Size128KB (128K x 8)
Package / Case100-TFQFPCore ProcessordsPIC
Core Size16-BitSpeed40 MIPs
ConnectivityI²C, IrDA, LIN, SPI, UART/USARTPeripheralsAC'97, Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT
Number Of I /o85Ram Size16K x 8
Voltage - Supply (vcc/vdd)3 V ~ 3.6 VData ConvertersA/D 32x10b/12b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
ProductDSCsData Bus Width16 bit
Processor SeriesDSPIC33FCoredsPIC
Maximum Clock Frequency40 MHzNumber Of Programmable I/os85
Data Ram Size16 KBMaximum Operating Temperature+ 85 C
Mounting StyleSMD/SMT3rd Party Development Tools52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By SupplierPG164130, DV164035, DV244005, DV164005, PG164120, DM240001, DV164033Minimum Operating Temperature- 40 C
Lead Free Status / RoHS StatusLead free / RoHS CompliantFor Use With876-1001 - DSPIC33 BREAKOUT BOARD
Eeprom Size-  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Page 31
32
Page 32
33
Page 33
34
Page 34
35
Page 35
36
Page 36
37
Page 37
38
Page 38
39
Page 39
40
Page 40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
Page 38/338

Download datasheet (3Mb)Embed
PrevNext
dsPIC33FJXXXGPX06A/X08A/X10A
The SA and SB bits are modified each time data
passes through the adder/subtracter, but can only be
cleared by the user. When set, they indicate that the
accumulator has overflowed its maximum range (bit 31
for 32-bit saturation or bit 39 for 40-bit saturation) and
will be saturated (if saturation is enabled). When
saturation is not enabled, SA and SB default to bit 39
overflow and, thus, indicate that a catastrophic
overflow has occurred. If the COVTE bit in the
INTCON1 register is set, SA and SB bits will generate
an arithmetic warning trap when saturation is disabled.
The Overflow and Saturation Status bits can optionally
be viewed in the STATUS Register (SR) as the logical
OR of OA and OB (in bit OAB) and the logical OR of SA
and SB (in bit SAB). This allows programmers to check
one bit in the STATUS register to determine if either
accumulator has overflowed, or one bit to determine if
either accumulator has saturated. This would be useful
for complex number arithmetic which typically uses
both the accumulators.
The device supports three Saturation and Overflow
modes:
1.
Bit 39 Overflow and Saturation:
When bit 39 overflow and saturation occurs, the
saturation logic loads the maximally positive 9.31
(0x7FFFFFFFFF), or maximally negative 9.31
value
(0x8000000000),
into
accumulator. The SA or SB bit is set and remains
set until cleared by the user. This is referred to as
‘super saturation’ and provides protection against
erroneous
data
or
unexpected
problems (e.g., gain calculations).
2.
Bit 31 Overflow and Saturation:
When bit 31 overflow and saturation occurs, the
saturation logic then loads the maximally
positive
1.31
value
(0x007FFFFFFF),
maximally negative 1.31 value (0x0080000000),
into the target accumulator. The SA or SB bit is
set and remains set until cleared by the user.
When this Saturation mode is in effect, the
guard bits are not used (so the OA, OB or OAB
bits are never set).
3.
Bit 39 Catastrophic Overflow:
The bit 39 Overflow Status bit from the adder is
used to set the SA or SB bit, which remains set
until cleared by the user. No saturation operation
is performed and the accumulator is allowed to
overflow (destroying its sign). If the COVTE bit in
the INTCON1 register is set, a catastrophic
overflow can initiate a trap exception.
DS70593B-page 38
3.6.2.2
Accumulator ‘Write Back’
The MAC class of instructions (with the exception of
MPY, MPY.N, ED and EDAC) can optionally write a
rounded version of the high word (bits 31 through 16)
of the accumulator that is not targeted by the instruction
into data space memory. The write is performed across
the X bus into combined X and Y address space. The
following addressing modes are supported:
1.
W13, Register Direct:
The rounded contents of the non-target
accumulator are written into W13 as a
1.15 fraction.
2.
[W13]+ = 2, Register Indirect with Post-Increment:
The rounded contents of the non-target
accumulator are written into the address pointed
to by W13 as a 1.15 fraction. W13 is then
incremented by 2 (for a word write).
3.6.2.3
Round Logic
The round logic is a combinational block which
performs a conventional (biased) or convergent
(unbiased) round function during an accumulator write
(store). The Round mode is determined by the state of
the RND bit in the CORCON register. It generates a
16-bit, 1.15 data value which is passed to the data
space write saturation logic. If rounding is not indicated
the
target
by the instruction, a truncated 1.15 data value is stored
and the least significant word is simply discarded.
Conventional rounding zero-extends bit 15 of the
accumulator and adds it to the ACCxH word (bits 16
algorithm
through 31 of the accumulator). If the ACCxL word
(bits 0 through 15 of the accumulator) is between
0x8000 and 0xFFFF (0x8000 included), ACCxH is
incremented. If ACCxL is between 0x0000 and 0x7FFF,
ACCxH is left unchanged. A consequence of this
or
algorithm is that over a succession of random rounding
operations, the value tends to be biased slightly
positive.
Convergent (or unbiased) rounding operates in the
same manner as conventional rounding, except when
ACCxL equals 0x8000. In this case, the Least
Significant bit (bit 16 of the accumulator) of ACCxH is
examined. If it is ‘1’, ACCxH is incremented. If it is ‘0’,
ACCxH is not modified. Assuming that bit 16 is
effectively random in nature, this scheme removes any
rounding bias that may accumulate.
The SAC and SAC.R instructions store either a
truncated (SAC), or rounded (SAC.R) version of the
contents of the target accumulator to data memory via
the
X
bus,
Section 3.6.2.4 “Data Space Write Saturation”). For
the MAC class of instructions, the accumulator
write-back operation will function in the same manner,
addressing combined MCU (X and Y) data space
though the X bus. For this class of instructions, the data
is always subject to rounding.
Preliminary
subject
to
data
saturation
(see
 2009 Microchip Technology Inc.