DSPIC33FJ128GP706A-I/PT Microchip Technology, DSPIC33FJ128GP706A-I/PT Datasheet - Page 100

IC DSPIC MCU/DSP 128K 64-TQFP

DSPIC33FJ128GP706A-I/PT

Manufacturer Part Number
DSPIC33FJ128GP706A-I/PT
Description
IC DSPIC MCU/DSP 128K 64-TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr

Specifications of DSPIC33FJ128GP706A-I/PT

Program Memory Type
FLASH
Program Memory Size
128KB (128K x 8)
Package / Case
64-TFQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
CAN, I²C, IrDA, LIN, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT
Number Of I /o
53
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 18x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC33F
Core
dsPIC
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
53
Data Ram Size
16 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DM240001, DV164033
Minimum Operating Temperature
- 40 C
Core Frequency
40MHz
Core Supply Voltage
3.3V
Embedded Interface Type
I2C, SPI, UART
No. Of I/o's
53
Flash Memory Size
128KB
Supply Voltage Range
3V To 3.6V
Rohs Compliant
Yes
Package
64TQFP
Device Core
dsPIC
Family Name
dsPIC33
Maximum Speed
40 MHz
Operating Supply Voltage
3.3 V
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
36-chx10-bit|36-chx12-bit
Number Of Timers
9
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
876-1001 - DSPIC33 BREAKOUT BOARD
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC33FJ128GP706A-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
MCP3909 / dsPIC33F 3-Phase Energy Meter Reference Design
DS51723A-page 100
Since the phase lag of a CT's output signal is related to the magnitude of current,
different correction coefficients, K, can be set according to different RMS current
values. In this design, 5 calibration points can be set. If it does not require high-preci-
sion, fewer points can be set to simplify calibration.
If one-time calibration cannot meet the precision requirement, more calibrations can be
done. The new angle error may still be calculated using Equation C-72. The new
correction coefficient is:
EQUATION C-74:
EQUATION C-75:
C.16.0.1 PHASE LAG COMPENSATION WHEN FREQUENCY VARIES
For the same current intensity, the signal delay caused by the CT is the same. When
the frequency of the input signal varies, the phase lag will be different. Normally,
calibration is done at 50 Hz. When the frequency varies, if the same phase lag
compensation coefficient for 50 Hz is still used, it will cause an error in the power
measurement. In most cases, the frequency varies in a small range (test specification
requires ±2.5%), so it has little effect on the measurement accuracy. For meters with
an accuracy of 0.5s or above, this measurement error can be ignored. But for 0.2s
meters, the error cannot be ignored and the frequency variation needs to be corrected
during calculation.
The phase lag compensation coefficient k
Assuming that the freqnency is 50 Hz, the signal delay caused by CT is t, then after
correction, the compensation coefficient k
EQUATION C-76:
EQUATION C-77:
When frequency varies, assuming that the frequency offset is Δf, i.e. the input signal
frequency is 50 + Δf, then the compensation coefficient will be:
EQUATION C-78:
EQUATION C-79:
k'
k'
1
2
=
=
cos
k'
sin
k'
1
2
(
(
k
=
k
=
Δϕ
Δϕ
1
2
cos
=
sin
=
1
1
+
+
cos
Δϕ
Δ
sin
Δϕ
Δϕ
ϕ
Δϕ
Δ
=
=
2
2
ϕ
)
)
cos
sin
=
=
=
=
1
1
and k
and k
k
(
k
cos
sin
(
2
t
1
t
(
(
(
(
cos
cos
t 50 2
50
t 50 2
50
2
2
+
Δϕ
Δϕ
are corrected during calculation.
will be:
+
Δ
Δ
2
2
f
f
) 2
π
) 2
π
)
k
k
)
1
2
π
π
© 2009 Microchip Technology Inc.
)
)
sin
sin
Δϕ
Δϕ
2
2

Related parts for DSPIC33FJ128GP706A-I/PT