ATMEGA1284P-PU Atmel, ATMEGA1284P-PU Datasheet - Page 187

MCU AVR 128K ISP FLASH 40-PDIP

ATMEGA1284P-PU

Manufacturer Part Number
ATMEGA1284P-PU
Description
MCU AVR 128K ISP FLASH 40-PDIP
Manufacturer
Atmel
Series
AVR® ATmegar

Specifications of ATMEGA1284P-PU

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
16 KB
Interface Type
2-Wire/SPI/USART
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, ATAVRRAVEN, ATAVRRZUSBSTICK
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
4KB
Ram Memory Size
16KB
Cpu Speed
20MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600 - DEV KIT FOR AVR/AVR32
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA1284P-PU
Manufacturer:
LUCENT
Quantity:
32
18.9.3
8272A–AVR–01/10
Asynchronous Operational Range
Figure 18-7. Stop Bit Sampling and Next Start Bit Sampling
The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.
A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in
delayed to (B). (C) marks a stop bit of full length. The early start bit detection influences the
operational range of the Receiver.
The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see
Table 18-2 on page
frames to the start bit.
The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.
D
S
S
S
R
Table 18-2 on page 188
that can be tolerated. Note that Normal Speed mode has higher toleration of baud rate
variations.
164A/164PA/324A/324PA/644A/644PA/1284/1284P
F
M
slow
(U2X = 0)
(U2X = 1)
Sample
Sample
RxD
R
slow
Sum of character size and parity size (D = 5 to 10 bit)
Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.
First sample number used for majority voting. S
for Double Speed mode.
Middle sample number used for majority voting. S
S
is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. R
accepted in relation to the receiver baud rate.
=
M
= 5 for Double Speed mode.
------------------------------------------ -
S 1
Figure 18-7 on page
188) base frequency, the Receiver will not be able to synchronize the
(
D
+
1
1
and
+
D S ⋅
1
2
)S
Table 18-3 on page 188
+
3
2
S
F
4
fast
5
3
is the ratio of the fastest incoming data rate that can be
187. For Double Speed mode the first low level must be
6
7
4
8
STOP 1
9
5
list the maximum receiver baud rate error
10
R
fast
(A)
0/1
6
=
0/1
F
-----------------------------------
(
= 8 for normal speed and S
D
M
(B)
0/1
0/1
(
+
= 9 for normal speed and
D
1
+
)S
2
)S
+
S
M
(C)
F
187
= 4

Related parts for ATMEGA1284P-PU