DSPIC33FJ128GP710A-I/PF Microchip Technology, DSPIC33FJ128GP710A-I/PF Datasheet - Page 80

IC DSPIC MCU/DSP 128K 100-TQFP

DSPIC33FJ128GP710A-I/PF

Manufacturer Part Number
DSPIC33FJ128GP710A-I/PF
Description
IC DSPIC MCU/DSP 128K 100-TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr
Datasheet

Specifications of DSPIC33FJ128GP710A-I/PF

Program Memory Type
FLASH
Program Memory Size
128KB (128K x 8)
Package / Case
100-TQFP, 100-VQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
CAN, I²C, IrDA, LIN, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT
Number Of I /o
85
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 32x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC33F
Core
dsPIC
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
85
Data Ram Size
16 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DM240001, DV164033
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
876-1001 - DSPIC33 BREAKOUT BOARD
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC33FJ128GP710A-I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
dsPIC33FJXXXGPX06A/X08A/X10A
5.2
The dsPIC33FJXXXGPX06A/X08A/X10A Flash pro-
gram memory array is organized into rows of 64
instructions or 192 bytes. RTSP allows the user to
erase a page of memory, which consists of eight rows
(512 instructions) at a time, and to program one row or
one word at a time. Table 25-12 illustrates typical erase
and programming times. The 8-row erase pages and
single row write rows are edge-aligned, from the begin-
ning of program memory, on boundaries of 1536 bytes
and 192 bytes, respectively.
The program memory implements holding buffers that
can contain 64 instructions of programming data. Prior
to the actual programming operation, the write data
must be loaded into the buffers in sequential order. The
instruction words loaded must always be from a group
of 64 boundary.
The basic sequence for RTSP programming is to set up
a Table Pointer, then do a series of TBLWT instructions
to load the buffers. Programming is performed by
setting the control bits in the NVMCON register. A total
of 64 TBLWTL and TBLWTH instructions are required
to load the instructions.
All of the table write operations are single-word writes
(two instruction cycles) because only the buffers are
written.
programming each row.
DS70593B-page 80
RTSP Operation
A
programming
cycle
is
required
Preliminary
for
5.3
A complete programming sequence is necessary for
programming or erasing the internal Flash in RTSP
mode.
programming operation is finished.
The programming time depends on the FRC accuracy
(see Table 25-19) and the value of the FRC Oscillator
Tuning register (see Register 9-4). Use the following
formula to calculate the minimum and maximum values
for the Row Write Time, Page Erase Time and Word
Write Cycle Time parameters (see Table 25-12).
EQUATION 5-1:
For example, if the device is operating at +125°C,
the FRC accuracy will be ±5%. If the TUN<5:0> bits
(see Register 9-4) are set to ‘b111111, the
Minimum Row Write Time is:
and, the Maximum Row Write Time is:
Setting the WR bit (NVMCON<15>) starts the opera-
tion, and the WR bit is automatically cleared when the
operation is finished.
5.4
There are two SFRs used to read and write the
program Flash memory:
• NVMCON: Flash Memory Control Register
• NVMKEY: Non-Volatile Memory Key Register
The NVMCON register (Register 5-1) controls which
blocks are to be erased, which memory type is to be
programmed and the start of the programming cycle.
NVMKEY (Register 5-2) is a write-only register that is
used for write protection. To start a programming or
erase sequence, the user must consecutively write 55h
and AAh to the NVMKEY register. Refer to Section 5.3
“Programming Operations” for further details.
T
T
RW
RW
------------------------------------------------------------------------------------------------------------------------- -
7.37 MHz
=
=
--------------------------------------------------------------------------------------------- - 1.586ms
7.37 MHz
---------------------------------------------------------------------------------------------- 1.435ms
7.37 MHz
The
Programming Operations
Control Registers
processor
FRC Accuracy
11064 Cycles
11064 Cycles
1 0.05
1
+
PROGRAMMING TIME
 2009 Microchip Technology Inc.
0.05
T
stalls
%
1 0.00375
1 0.00375
(waits)
FRC Tuning
=
=
until
%
the

Related parts for DSPIC33FJ128GP710A-I/PF