C8051F046-GQ Silicon Laboratories Inc, C8051F046-GQ Datasheet - Page 230

IC 8051 MCU 32K FLASH 100TQFP

C8051F046-GQ

Manufacturer Part Number
C8051F046-GQ
Description
IC 8051 MCU 32K FLASH 100TQFP
Manufacturer
Silicon Laboratories Inc
Series
C8051F04xr
Datasheets

Specifications of C8051F046-GQ

Core Processor
8051
Core Size
8-Bit
Speed
25MHz
Connectivity
CAN, EBI/EMI, SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
64
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Ram Size
4.25K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 3.6 V
Data Converters
A/D 13x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TQFP, 100-VQFP
Processor Series
C8051F0x
Core
8051
Data Bus Width
8 bit
Data Ram Size
4.25 KB
Interface Type
CAN, SMBus, SPI, UART
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
64
Number Of Timers
5
Operating Supply Voltage
2.7 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
PK51, CA51, A51, ULINK2
Development Tools By Supplier
C8051F040DK
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 13 Channel
On-chip Dac
12 bit, 2 Channel
Package
100TQFP
Device Core
8051
Family Name
C8051F04x
Maximum Speed
25 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
336-1211

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
C8051F046-GQ
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
Part Number:
C8051F046-GQR
Manufacturer:
AMAZING
Quantity:
67 000
Part Number:
C8051F046-GQR
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
Note 1: If Phase_Seg1 + Phase_Seg2 is even, then Phase_Seg2 = Phase_Seg1.
Note 2: Phase_Seg2 should be at least 2 t
C8051F040/1/2/3/4/5/6/7
We will adjust the length of the 4 bit segments so that their sum is as close as possible to the desired bit
time. Since each segment must be an integer multiple of the time quantum (t
time is 22 t
Prop_Seg must be greater than or equal to the propagation delay of 400 ns; we choose 9 t
The remaining time quanta (t
shown in Figure 18.1. We select Phase_Seg1 = 6 t
The Synchronization Jump Width (SJW) timing parameter is defined by Figure 18.2. It is used for determin-
ing the value written to the Bit Timing Register and for determining the required oscillator tolerance. Since
we are using a quartz crystal as the system clock source, an oscillator tolerance calculation is not needed.
The value written to the Bit Timing Register can be calculated using Equation 18.3. The BRP Extension
register is left at its reset value of 0x0000.
The following steps are performed to initialize the CAN timing registers:
230
BRPE = BRP - 1 = BRP Extension Register = 0x0000
SJWp = SJW - 1 = min ( 4, 6 ) – 1 = 3
TSEG1 = (Prop_Seg + Phase_Seg1 - 1) = 9 + 6 - 1 = 14
TSEG2 = (Phase_Seg2 - 1) = 5
Bit Timing Register = (TSEG2 * 0x1000) + (TSEG1 * 0x0100) + (SJWp * 0x0040) + BRPE = 0x5EC0
Step 1. Set the SFRPAGE register to CAN0_PAGE.
Step 2. Set the INIT the CCE bits to ‘1’ in the CAN Control Register accessible through the
Step 3. Set the CAN0ADR to 0x03 to point to the Bit Timing Register.
q
(994.642 ns), yielding a bit rate of 1.00539 Mbit/sec. The Sync_Seg is a constant 1 t
CAN0CN SFR.
Equation 18.3. Calculating the Bit Timing Register Value
Equation 18.2. Synchronization Jump Width (SJW)
Phase_Seg1
Equation 18.1. Assigning the Phase Segments
SJW = min ( 4, Phase_Seg1 )
q
) in the bit time are divided between Phase_Seg1 and Phase_Seg2 as
+
Phase_Seg2
q
.
=
Rev. 1.5
q
Bit Time
and Phase_Seg2 = 6 t
Sync_Seg
+
Prop_Seg
q
.
q
), the closest achievable bit
q
(406.899 ns).
q
. The

Related parts for C8051F046-GQ