MC9S12D64MFUE Freescale Semiconductor, MC9S12D64MFUE Datasheet - Page 70

IC MCU 64K FLASH 25MHZ 80-QFP

MC9S12D64MFUE

Manufacturer Part Number
MC9S12D64MFUE
Description
IC MCU 64K FLASH 25MHZ 80-QFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12D64MFUE

Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
CAN, I²C, SCI, SPI
Peripherals
PWM, WDT
Number Of I /o
59
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 5.25 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
80-QFP
Processor Series
S12D
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
4 KB
Interface Type
CAN/I2C/SCI/SPI
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
49
Number Of Timers
8
Operating Supply Voltage
4.5 V to 5.25 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
M68KIT912DP256
Minimum Operating Temperature
- 40 C
On-chip Adc
2 (8-ch x 10-bit)
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12D64MFUE
Manufacturer:
FREESCALE
Quantity:
2 650
Part Number:
MC9S12D64MFUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12D64MFUE
Manufacturer:
FREESCALE
Quantity:
2 650
Company:
Part Number:
MC9S12D64MFUE
Quantity:
48
MC9S12DJ64 Device User Guide — V01.20
4.3 Security
The device will make available a security feature preventing the unauthorized read and write of the
memory contents. This feature allows:
The user must be reminded that part of the security must lie with the user’s code. An extreme example
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose
of security. At the same time the user may also wish to put a back door in the user’s program. An example
of this is the user downloads a key through the SCI which allows access to a programming routine that
updates parameters stored in EEPROM.
4.3.1 Securing the Microcontroller
Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by
programming the security bits located in the FLASH module. These non-volatile bits will keep the part
secured through resetting the part and through powering down the part.
The security byte resides in a portion of the Flash array.
Check the Flash Block User Guide for more details on the security configuration.
4.3.2 Operation of the Secured Microcontroller
4.3.2.1 Normal Single Chip Mode
This will be the most common usage of the secured part. Everything will appear the same as if the part was
not secured with the exception of BDM operation. The BDM operation will be blocked.
70
Protection of the contents of FLASH,
Protection of the contents of EEPROM,
Operation in single-chip mode,
Operation from external memory with internal FLASH and EEPROM disabled.
PE7 = XCLKS
VREGEN
Table 4-2 Clock Selection Based on PE7
0
Table 4-3 Voltage Regulator VREGEN
1
0
Internal Voltage Regulator enabled
Internal Voltage Regulator disabled, VDD1,2 and
VDDPLL must be supplied externally with 2.5V
Pierce Oscillator/external clock selected
Description
Description

Related parts for MC9S12D64MFUE