IC 8051 MCU 64K FLASH 64TQFP

C8051F021-GQ

Manufacturer Part NumberC8051F021-GQ
DescriptionIC 8051 MCU 64K FLASH 64TQFP
ManufacturerSilicon Laboratories Inc
SeriesC8051F02x
C8051F021-GQ datasheets
 


Specifications of C8051F021-GQ

Program Memory TypeFLASHProgram Memory Size64KB (64K x 8)
Package / Case64-TQFP, 64-VQFPCore Processor8051
Core Size8-BitSpeed25MHz
ConnectivityEBI/EMI, SMBus (2-Wire/I²C), SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o32Ram Size4.25K x 8
Voltage - Supply (vcc/vdd)2.7 V ~ 3.6 VData ConvertersA/D 8x8b, 8x12b; D/A 2x12b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Processor SeriesC8051F0xCore8051
Data Bus Width8 bitData Ram Size4.25 KB
Interface TypeI2C/SMBus/SPI/UARTMaximum Clock Frequency25 MHz
Number Of Programmable I/os32Number Of Timers4
Operating Supply Voltage2.7 V to 3.6 VMaximum Operating Temperature+ 85 C
Mounting StyleSMD/SMT3rd Party Development ToolsPK51, CA51, A51, ULINK2
Development Tools By SupplierC8051F020DKMinimum Operating Temperature- 40 C
On-chip Adc8-ch x 8-bit or 8-ch x 12-bitOn-chip Dac2-ch x 12-bit
No. Of I/o's32Ram Memory Size4352Byte
Cpu Speed25MHzNo. Of Timers5
No. Of Pwm Channels5Rohs CompliantYes
Data Rom Size64 KBA/d Bit Size12 bit
A/d Channels Available8Height1.05 mm
Length10 mmSupply Voltage (max)3.6 V
Supply Voltage (min)2.7 VWidth10 mm
Lead Free Status / RoHS StatusLead free / RoHS CompliantFor Use With336-1200 - DEV KIT FOR F020/F021/F022/F023
Eeprom Size-Other names336-1201
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
Page 191
192
Page 192
193
Page 193
194
Page 194
195
Page 195
196
Page 196
197
Page 197
198
Page 198
199
Page 199
200
Page 200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
Page 199/272

Download datasheet (2Mb)Embed
PrevNext
19.2. SPI0 Operation
Only a SPI master device can initiate a data transfer. SPI0 is placed in master mode by setting the Master Enable flag
(MSTEN, SPI0CN.1). Writing a byte of data to the SPI0 data register (SPI0DAT) when in Master Mode starts a data
transfer. The SPI0 master immediately shifts out the data serially on the MOSI line while providing the serial clock
on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt
request is generated when the SPIF flag is set. The SPI0 master can be configured to shift in/out from one to eight bits
in a transfer operation in order to accommodate slave devices with different word lengths. The SPIFRS bits in the
SP0I Configuration Register (SPI0CFG.[2:0]) are used to select the number of bits to shift in/out in a transfer opera-
tion.
While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously
transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex operation. The data byte
received from the slave replaces the data in the master's data register. Therefore, the SPIF flag serves as both a trans-
mit-complete and receive-data-ready flag. The data transfer in both directions is synchronized with the serial clock
generated by the master. Figure 19.3 illustrates the full-duplex operation of an SPI master and an addressed slave.
Figure 19.3. Full Duplex Operation
MASTER DEVICE
SPI SHIFT REGISTER
7
6
5
4
3
2
1
0
Receive Buffer
Baud Rate
Generator
When SPI0 is enabled and not configured as a master, it will operate as an SPI slave. Another SPI device acting as a
master will initiate a transfer by driving the NSS input signal low. The master then shifts data out of the shift register
on the MOSI pin using the its serial clock. The SPIF flag is set to logic 1 when the NSS signal goes high, indicating
the end of a data transfer. Note that following a rising edge on NSS, the receive buffer will always contain the last
8 bits of data in the slave shift register. The slave can load its shift register for the next data transfer by writing to the
SPI0 data register. The slave must make the write to the data register at least one SPI serial clock cycle before the
master starts the next transmission. Otherwise, the byte of data already in the slave's shift register will be transferred.
Note that the NSS signal must be driven low at least 2 system clocks before the first active edge of SCK for each byte
transfer.
The SPI0 data register is double buffered on reads, but not on writes. If a write to SPI0DAT is attempted during a data
transfer, the WCOL flag (SPI0CN.6) will be set to logic 1 and the write will be ignored. The current data transfer will
continue uninterrupted. A read of the SPI0 data register by the system controller actually reads the receive buffer. The
receive overrun flag (RXOVRN in register SPI0CN) is set anytime a SPI0 slave detects a rising edge on NSS while
the receive buffer still holds unread data from a previous transfer. The new data is not transferred to the receive buf-
fer, allowing the previously received data byte to be read. The data byte causing the overrun is lost.
MOSI
MOSI
MISO
MISO
VDD
NSS
NSS
SCK
SCK
Px.y
Rev. 1.4
C8051F020/1/2/3
SLAVE DEVICE
SPI SHIFT REGISTER
7
6
5
4
3
2
1
0
Receive Buffer
199