IC MCU 1.5K FLASH 16-TSSOP

MC68HC908QY1VDTE

Manufacturer Part NumberMC68HC908QY1VDTE
DescriptionIC MCU 1.5K FLASH 16-TSSOP
ManufacturerFreescale Semiconductor
SeriesHC08
MC68HC908QY1VDTE datasheet
 

Specifications of MC68HC908QY1VDTE

Core ProcessorHC08Core Size8-Bit
Speed8MHzPeripheralsLVD, POR, PWM
Number Of I /o13Program Memory Size1.5KB (1.5K x 8)
Program Memory TypeFLASHRam Size128 x 8
Voltage - Supply (vcc/vdd)2.7 V ~ 5.5 VOscillator TypeInternal
Operating Temperature-40°C ~ 105°CPackage / Case16-TSSOP
Processor SeriesHC08QCoreHC08
Data Bus Width8 bitData Ram Size128 B
Maximum Clock Frequency8 MHzNumber Of Programmable I/os14
Number Of Timers2Maximum Operating Temperature+ 105 C
Mounting StyleSMD/SMTDevelopment Tools By SupplierFSICEBASE, M68CBL05AE, DEMO908QB8, DEMO908QC16
Minimum Operating Temperature- 40 CLead Free Status / RoHS StatusLead free / RoHS Compliant
Eeprom Size-Data Converters-
Connectivity-  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
Page 91
92
Page 92
93
Page 93
94
Page 94
95
Page 95
96
Page 96
97
Page 97
98
Page 98
99
Page 99
100
Page 100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
Page 91/184

Download datasheet (2Mb)Embed
PrevNext
11.3.1.1 Internal Oscillator Trimming
The 8-bit trimming register, OSCTRIM, allows a clock period adjust of +127 and –128 steps. Increasing
OSCTRIM value increases the clock period. Trimming allows the internal clock frequency to be set to
12.8 MHz ± 5%.
All devices are factory programmed with trim values in reserved FLASH memory locations $FFC0 and
$FFC1. The trim value is not automatically loaded into the OSCTRIM register. User software must copy
the trim value from $FFC0 or $FFC1 into OSCTRIM if needed. The factory trim value provides the
accuracy required for communication using forced monitor mode. Some production programmers erase
the factory trim values, so confirm with your programmer vendor that the trim values at $FFC0 and $FFC1
are preserved, or are re-trimmed. Trimming the device in the user application board will provide the most
accurate trim value.
11.3.1.2 Internal to External Clock Switching
When external clock source (external OSC, RC, or XTAL) is desired, the user must perform the following
steps:
1. For external crystal circuits only, OSCOPT[1:0] = 1:1: To help precharge an external crystal
oscillator, set PTA4 (OSC2) as an output and drive high for several cycles. This may help the
crystal circuit start more robustly.
2. Set CONFIG2 bits OSCOPT[1:0] according to . The oscillator module control logic will then set
OSC1 as an external clock input and, if the external crystal option is selected, OSC2 will also be
set as the clock output.
3. Create a software delay to wait the stabilization time needed for the selected clock source (crystal,
resonator, RC) as recommended by the component manufacturer. A good rule of thumb for crystal
oscillators is to wait 4096 cycles of the crystal frequency, i.e., for a 4-MHz crystal, wait
approximately 1 msec.
4. After the manufacturer’s recommended delay has elapsed, the ECGON bit in the OSC status
register (OSCSTAT) needs to be set by the user software.
5. After ECGON set is detected, the OSC module checks for oscillator activity by waiting two external
clock rising edges.
6. The OSC module then switches to the external clock. Logic provides a glitch free transition.
7. The OSC module first sets the ECGST bit in the OSCSTAT register and then stops the internal
oscillator.
Once transition to the external clock is done, the internal oscillator will only
be reactivated with reset. No post-switch clock monitor feature is
implemented (clock does not switch back to internal if external clock dies).
11.3.2 External Oscillator
The external clock option is designed for use when a clock signal is available in the application to provide
a clock source to the microcontroller. The OSC1 pin is enabled as an input by the oscillator module. The
clock signal is used directly to create BUSCLKX4 and also divided by two to create BUSCLKX2.
In this configuration, the OSC2 pin cannot output BUSCLKX4.So the OSC2EN bit in the port A pullup
enable register will be clear to enable PTA4 I/O functions on the pin
Freescale Semiconductor
NOTE
MC68HC908QY/QT Family Data Sheet, Rev. 6
Functional Description
91