ATMEGA88PA-CCU Atmel, ATMEGA88PA-CCU Datasheet - Page 19

no-image

ATMEGA88PA-CCU

Manufacturer Part Number
ATMEGA88PA-CCU
Description
IC MCU AVR 8K FLASH 32VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA88PA-CCU

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
23
Program Memory Size
8KB (4K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VFQFN
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA88PA-CCU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA88PA-CCUR
Manufacturer:
Atmel
Quantity:
10 000
7.3.1
7.4
7.4.1
8271C–AVR–08/10
EEPROM Data Memory
Data Memory Access Times
EEPROM Read/Write Access
This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clk
Figure 7-4.
The ATmega48A/48PA/88A/88PA/168A/168PA/328/328P contains 256/512/512/1K bytes of
data EEPROM memory. It is organized as a separate data space, in which single bytes can be
read and written. The EEPROM has an endurance of at least 100,000 write/erase cycles. The
access between the EEPROM and the CPU is described in the following, specifying the
EEPROM Address Registers, the EEPROM Data Register, and the EEPROM Control Register.
”Memory Programming” on page 296
in SPI or Parallel Programming mode.
The EEPROM Access Registers are accessible in the I/O space.
The write access time for the EEPROM is given in
lets the user software detect when the next byte can be written. If the user code contains instruc-
tions that write the EEPROM, some precautions must be taken. In heavily filtered power
supplies, V
period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See
situations.
In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.
When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.
ATmega48A/48PA/88A/88PA/168A/168PA/328/328
”Preventing EEPROM Corruption” on page 20
CC
Address
clk
is likely to rise or fall slowly on power-up/down. This causes the device for some
On-chip Data SRAM Access Cycles
Data
Data
WR
CPU
RD
Compute Address
T1
Memory Access Instruction
contains a detailed description on EEPROM Programming
Address valid
CPU
for details on how to avoid problems in these
T2
Table
cycles as described in
7-2. A self-timing function, however,
Next Instruction
T3
Figure
7-4.
19

Related parts for ATMEGA88PA-CCU