ATMEGA88PA-CCU Atmel, ATMEGA88PA-CCU Datasheet - Page 256

no-image

ATMEGA88PA-CCU

Manufacturer Part Number
ATMEGA88PA-CCU
Description
IC MCU AVR 8K FLASH 32VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA88PA-CCU

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
23
Program Memory Size
8KB (4K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VFQFN
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA88PA-CCU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA88PA-CCUR
Manufacturer:
Atmel
Quantity:
10 000
23.5
8271C–AVR–08/10
Changing Channel or Reference Selection
Figure 23-7. ADC Timing Diagram, Free Running Conversion
Table 23-1.
The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values
to ADMUX until one ADC clock cycle after ADSC is written.
If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.
If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:
When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.
ATmega48A/48PA/88A/88PA/168A/168PA/328/328
Condition
First conversion
Normal conversions, single ended
Auto Triggered conversions
a. When ADATE or ADEN is cleared.
b. During conversion, minimum one ADC clock cycle after the trigger event.
c. After a conversion, before the Interrupt Flag used as trigger source is cleared.
ADC Conversion Time
Cycle Number
ADC Clock
ADSC
ADIF
ADCH
ADCL
Conversion
Complete
One Conversion
11
Sample & Hold
(Cycles from Start of Conversion)
12
13
Next Conversion
1
13.5
Sign and MSB of Result
LSB of Result
1.5
2
2
MUX and REFS
Update
3
Sample & Hold
4
Conversion Time
(Cycles)
13.5
25
13
256

Related parts for ATMEGA88PA-CCU