ATMEGA88-20AUR Atmel, ATMEGA88-20AUR Datasheet - Page 41

no-image

ATMEGA88-20AUR

Manufacturer Part Number
ATMEGA88-20AUR
Description
MCU AVR 8K FLASH 20MHZ 32TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA88-20AUR

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
23
Program Memory Size
8KB (4K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA88-20AUR
Manufacturer:
Atmel
Quantity:
10 000
9.8.3
9.8.4
9.8.5
9.8.6
9.8.7
2545S–AVR–07/10
Brown-out Detector
Internal Voltage Reference
Watchdog Timer
Port Pins
On-chip Debug System
If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to
on how to configure the Brown-out Detector.
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to
age Reference” on page 47
If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes and hence always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to
When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the I/O clock (clk
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have
an analog signal level close to V
For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to V
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDR0). Refer to
Input Disable Register 0” on page 258
If the On-chip debug system is enabled by the DWEN Fuse and the chip enters sleep mode, the
main clock source is enabled and hence always consumes power. In the deeper sleep modes,
this will contribute significantly to the total current consumption.
“Watchdog Timer” on page 48
CC
I/O
“DIDR1 – Digital Input Disable Register 1” on page 242
/2 on an input pin can cause significant current even in active mode. Digital
) and the ADC clock (clk
for details on the start-up time.
“Digital Input Enable and Sleep Modes” on page 74
CC
/2, the input buffer will use excessive power.
for details.
ADC
for details on how to configure the Watchdog Timer.
) are stopped, the input buffers of the device will
“Brown-out Detection” on page 46
ATmega48/88/168
and
“DIDR0 – Digital
“Internal Volt-
for details on
for details
41

Related parts for ATMEGA88-20AUR