IC PIC MCU FLASH 16K 28-SSOP

PIC24F16KA102-I/SS

Manufacturer Part NumberPIC24F16KA102-I/SS
DescriptionIC PIC MCU FLASH 16K 28-SSOP
ManufacturerMicrochip Technology
SeriesPIC® XLP™ 24F
PIC24F16KA102-I/SS datasheets
 


Specifications of PIC24F16KA102-I/SS

Program Memory TypeFLASHProgram Memory Size16KB (5.5K x 24)
Package / Case28-SSOPCore ProcessorPIC
Core Size16-BitSpeed32MHz
ConnectivityI²C, IrDA, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDT
Number Of I /o24Eeprom Size512 x 8
Ram Size1.5K x 8Voltage - Supply (vcc/vdd)1.8 V ~ 3.6 V
Data ConvertersA/D 9x10bOscillator TypeInternal
Operating Temperature-40°C ~ 85°CProcessor SeriesPIC24F
CorePICData Bus Width16 bit
Data Ram Size1.5 KBInterface TypeI2C/IrDA/SPI/UART
Maximum Clock Frequency32 MHzNumber Of Programmable I/os24
Number Of Timers3Operating Supply Voltage1.8 V to 3.6 V
Maximum Operating Temperature+ 85 CMounting StyleSMD/SMT
3rd Party Development Tools52713-733, 52714-737, 53276-922, EWDSPICDevelopment Tools By SupplierPG164130, DV164035, DV244005, DV164005, DM240001
Minimum Operating Temperature- 40 COn-chip Adc9-ch x 10-bit
Lead Free Status / RoHS StatusLead free / RoHS CompliantFor Use WithMA240017 - MODULE PLUG-IN PIC24F16KA102 PIM
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
Page 101
102
Page 102
103
Page 103
104
Page 104
105
Page 105
106
Page 106
107
Page 107
108
Page 108
109
Page 109
110
Page 110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
Page 103/254

Download datasheet (4Mb)Embed
PrevNext
10.0
POWER-SAVING FEATURES
This data sheet summarizes the features
Note:
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F
Family
Reference
”Section 39. Power-Saving Features
with Deep Sleep” (DS39727).
The PIC24F16KA102 family of devices provides the
ability to manage power consumption by selectively
managing clocking to the CPU and the peripherals. In
general, a lower clock frequency and a reduction in the
number of circuits being clocked constitutes lower
consumed power. All PIC24F devices manage power
consumption in four different ways:
• Clock frequency
• Instruction-based Sleep, Idle and Deep Sleep
modes
• Software controlled Doze mode
• Selective peripheral control in software
Combinations of these methods can be used to
selectively tailor an application’s power consumption,
while still maintaining critical application features, such
as timing-sensitive communications.
10.1
Clock Frequency and Clock
Switching
PIC24F devices allow for a wide range of clock
frequencies to be selected under application control. If
the system clock configuration is not locked, users can
choose low-power or high-precision oscillators by simply
changing the NOSC bits. The process of changing a
system clock during operation, as well as limitations to
the process, are discussed in more detail in Section 8.0
“Oscillator Configuration”.
10.2
Instruction-Based Power-Saving
Modes
PIC24F devices have two special power-saving modes
that are entered through the execution of a special
PWRSAV instruction. Sleep mode stops clock operation
and halts all code execution; Idle mode halts the CPU
and code execution, but allows peripheral modules to
continue operation. Deep Sleep mode stops clock
operation, code execution and all peripherals except
RTCC and DSWDT. It also freezes I/O states and
removes power to SRAM and Flash memory.
EXAMPLE 10-1:
PWRSAV
INSTRUCTION SYNTAX
PWRSAV
#SLEEP_MODE
; Put the device into SLEEP mode
PWRSAV
#IDLE_MODE
; Put the device into IDLE mode
BSET
DSCON, #DSEN
; Enable Deep Sleep
PWRSAV
#SLEEP_MODE
; Put the device into Deep SLEEP mode
© 2009 Microchip Technology Inc.
PIC24F16KA102 FAMILY
The assembly syntax of the PWRSAV instruction is
shown in Example 10-1.
SLEEP_MODE and IDLE_MODE are con-
Note:
stants defined in the assembler include
file for the selected device.
Sleep and Idle modes can be exited as a result of an
Manual”,
enabled interrupt, WDT time-out or a device Reset.
When the device exits these modes, it is said to
“wake-up”.
10.2.1
SLEEP MODE
Sleep mode includes these features:
• The system clock source is shut down. If an
on-chip oscillator is used, it is turned off.
• The device current consumption will be reduced
to a minimum provided that no I/O pin is sourcing
current.
• The I/O pin directions and states are frozen.
• The Fail-Safe Clock Monitor does not operate
during Sleep mode since the system clock source
is disabled.
• The LPRC clock will continue to run in Sleep
mode if the WDT or RTCC with LPRC as clock
source is enabled.
• The WDT, if enabled, is automatically cleared
prior to entering Sleep mode.
• Some device features or peripherals may
continue to operate in Sleep mode. This includes
items, such as the input change notification on the
I/O ports, or peripherals that use an external clock
input. Any peripheral that requires the system
clock source for its operation will be disabled in
Sleep mode.
The device will wake-up from Sleep mode on any of
these events:
• On any interrupt source that is individually
enabled
• On any form of device Reset
• On a WDT time-out
On wake-up from Sleep, the processor will restart with
the same clock source that was active when Sleep
mode was entered.
Preliminary
DS39927B-page 101