IC PIC MCU FLASH 16K 28-SSOP

PIC24F16KA102-I/SS

Manufacturer Part NumberPIC24F16KA102-I/SS
DescriptionIC PIC MCU FLASH 16K 28-SSOP
ManufacturerMicrochip Technology
SeriesPIC® XLP™ 24F
PIC24F16KA102-I/SS datasheets
 

Specifications of PIC24F16KA102-I/SS

Program Memory TypeFLASHProgram Memory Size16KB (5.5K x 24)
Package / Case28-SSOPCore ProcessorPIC
Core Size16-BitSpeed32MHz
ConnectivityI²C, IrDA, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDT
Number Of I /o24Eeprom Size512 x 8
Ram Size1.5K x 8Voltage - Supply (vcc/vdd)1.8 V ~ 3.6 V
Data ConvertersA/D 9x10bOscillator TypeInternal
Operating Temperature-40°C ~ 85°CProcessor SeriesPIC24F
CorePICData Bus Width16 bit
Data Ram Size1.5 KBInterface TypeI2C/IrDA/SPI/UART
Maximum Clock Frequency32 MHzNumber Of Programmable I/os24
Number Of Timers3Operating Supply Voltage1.8 V to 3.6 V
Maximum Operating Temperature+ 85 CMounting StyleSMD/SMT
3rd Party Development Tools52713-733, 52714-737, 53276-922, EWDSPICDevelopment Tools By SupplierPG164130, DV164035, DV244005, DV164005, DM240001
Minimum Operating Temperature- 40 COn-chip Adc9-ch x 10-bit
Lead Free Status / RoHS StatusLead free / RoHS CompliantFor Use WithMA240017 - MODULE PLUG-IN PIC24F16KA102 PIM
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
Page 101
102
Page 102
103
Page 103
104
Page 104
105
Page 105
106
Page 106
107
Page 107
108
Page 108
109
Page 109
110
Page 110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
Page 109/254

Download datasheet (4Mb)Embed
PrevNext
10.3
Doze Mode
Generally, changing clock speed and invoking one of
the power-saving modes are the preferred strategies
for reducing power consumption. There may be
circumstances, however, where this is not practical. For
example, it may be necessary for an application to
maintain uninterrupted synchronous communication,
even while it is doing nothing else. Reducing system
clock speed may introduce communication errors,
while
using
a
power-saving
mode
communications completely.
Doze mode is a simple and effective alternative method
to reduce power consumption while the device is still
executing code. In this mode, the system clock
continues to operate from the same source and at the
same speed. Peripheral modules continue to be
clocked at the same speed while the CPU clock speed
is reduced. Synchronization between the two clock
domains is maintained, allowing the peripherals to
access the SFRs while the CPU executes code at a
slower rate.
Doze mode is enabled by setting the DOZEN bit
(CLKDIV<11>). The ratio between peripheral and core
clock speed is determined by the DOZE<2:0> bits
(CLKDIV<14:12>).
There
are
eight
configurations, from 1:1 to 1:128, with 1:1 being the
default.
It is also possible to use Doze mode to selectively reduce
power consumption in event driven applications. This
allows clock-sensitive functions, such as synchronous
communications, to continue without interruption while
the CPU Idles, waiting for something to invoke an
interrupt routine. Enabling the automatic return to
full-speed CPU operation on interrupts is enabled by set-
ting the ROI bit (CLKDIV<15>). By default, interrupt
events have no effect on Doze mode operation.
© 2009 Microchip Technology Inc.
PIC24F16KA102 FAMILY
10.4
Selective Peripheral Module
Control
Idle and Doze modes allow users to substantially
reduce power consumption by slowing or stopping the
CPU clock. Even so, peripheral modules still remain
clocked, and thus, consume power. There may be
cases where the application needs what these modes
do not provide: the allocation of power resources to
CPU processing with minimal power consumption from
may
stop
the peripherals.
PIC24F devices address this requirement by allowing
peripheral modules to be selectively disabled, reducing
or eliminating their power consumption. This can be
done with two control bits:
• The Peripheral Enable bit, generically named,
“XXXEN”, located in the module’s main control
SFR.
• The Peripheral Module Disable (PMD) bit,
generically named, “XXXMD”, located in one of
the PMD Control registers.
Both bits have similar functions in enabling or disabling
its associated module. Setting the PMD bit for a module
disables all clock sources to that module, reducing its
power consumption to an absolute minimum. In this
possible
state, the control and status registers associated with
the peripheral will also be disabled, so writes to those
registers will have no effect and read values will be
invalid. Many peripheral modules have a corresponding
PMD bit.
In contrast, disabling a module by clearing its XXXEN
bit disables its functionality, but leaves its registers
available to be read and written to. Power consumption
is reduced, but not by as much as the PMD bits are
used. Most peripheral modules have an enable bit;
exceptions include capture, compare and RTCC.
To achieve more selective power savings, peripheral
modules can also be selectively disabled when the
device enters Idle mode. This is done through the control
bit of the generic name format, “XXXIDL”. By default, all
modules that can operate during Idle mode will do so.
Using the disable on Idle feature disables the module
while in Idle mode, allowing further reduction of power
consumption during Idle mode, enhancing power
savings for extremely critical power applications.
Preliminary
DS39927B-page 107