PIC24F16KA102-I/SS Microchip Technology, PIC24F16KA102-I/SS Datasheet - Page 65

IC PIC MCU FLASH 16K 28-SSOP

PIC24F16KA102-I/SS

Manufacturer Part Number
PIC24F16KA102-I/SS
Description
IC PIC MCU FLASH 16K 28-SSOP
Manufacturer
Microchip Technology
Series
PIC® XLP™ 24Fr

Specifications of PIC24F16KA102-I/SS

Program Memory Type
FLASH
Program Memory Size
16KB (5.5K x 24)
Package / Case
28-SSOP
Core Processor
PIC
Core Size
16-Bit
Speed
32MHz
Connectivity
I²C, IrDA, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
24
Eeprom Size
512 x 8
Ram Size
1.5K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 9x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC24F
Core
PIC
Data Bus Width
16 bit
Data Ram Size
1.5 KB
Interface Type
I2C/IrDA/SPI/UART
Maximum Clock Frequency
32 MHz
Number Of Programmable I/os
24
Number Of Timers
3
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, DM240001
Minimum Operating Temperature
- 40 C
On-chip Adc
9-ch x 10-bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
MA240017 - MODULE PLUG-IN PIC24F16KA102 PIM
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
8.0
INTERRUPT CONTROLLER
This data sheet summarizes the features
Note:
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information on the
Interrupt Controller, refer to the “PIC24F
Family Reference Manual”, Section 8.
“Interrupts” (DS39707).
The PIC24F interrupt controller reduces the numerous
peripheral interrupt request signals to a single interrupt
request signal to the CPU. It has the following features:
• Up to eight processor exceptions and
software traps
• Seven user-selectable priority levels
• Interrupt Vector Table (IVT) with up to 118 vectors
• Unique vector for each interrupt or exception
source
• Fixed priority within a specified user priority level
• Alternate Interrupt Vector Table (AIVT) for debug
support
• Fixed interrupt entry and return latencies
8.1
Interrupt Vector (IVT) Table
The IVT is displayed in Figure 8-1. The IVT resides in
the program memory, starting at location 000004h. The
IVT contains 126 vectors, consisting of eight
non-maskable trap vectors, plus, up to 118 sources of
interrupt. In general, each interrupt source has its own
vector. Each interrupt vector contains a 24-bit wide
address. The value programmed into each interrupt
vector location is the starting address of the associated
Interrupt Service Routine (ISR).
Interrupt vectors are prioritized in terms of their natural
priority; this is linked to their position in the vector table.
All other things being equal, lower addresses have a
higher natural priority. For example, the interrupt
associated with vector 0 will take priority over interrupts
at any other vector address.
PIC24F16KA102
family
devices
non-maskable traps and unique interrupts; these are
summarized in Table 8-1 and Table 8-2.
© 2009 Microchip Technology Inc.
PIC24F16KA102 FAMILY
8.1.1
ALTERNATE INTERRUPT VECTOR
TABLE (AIVT)
The Alternate Interrupt Vector Table (AIVT) is located
after the IVT, as displayed in Figure 8-1. Access to the
AIVT
is
provided
(INTCON2<15>). If the ALTIVT bit is set, all interrupt
and exception processes will use the alternate vectors
instead of the default vectors. The alternate vectors are
organized in the same manner as the default vectors.
The AIVT supports emulation and debugging efforts by
providing a means to switch between an application
and a support environment without requiring the
interrupt vectors to be reprogrammed. This feature also
enables switching between applications for evaluation
of different software algorithms at run-time. If the AIVT
is not needed, the AIVT should be programmed with
the same addresses used in the IVT.
8.2
Reset Sequence
A device Reset is not a true exception because the
interrupt controller is not involved in the Reset process.
The PIC24F devices clear their registers in response to
a Reset, which forces the Program Counter (PC) to
zero. The microcontroller then begins program execu-
tion at location 000000h. The user programs a GOTO
instruction at the Reset address, which redirects the
program execution to the appropriate start-up routine.
Any unimplemented or unused vector
Note:
locations in the IVT and AIVT should be
programmed with the address of a default
interrupt handler routine that contains a
RESET instruction.
implement
Preliminary
by
the
ALTIVT
control
bit
DS39927B-page 63

Related parts for PIC24F16KA102-I/SS