DSPIC30F4011-20E/PT Microchip Technology, DSPIC30F4011-20E/PT Datasheet - Page 40

IC DSPIC MCU/DSP 48K 44TQFP

DSPIC30F4011-20E/PT

Manufacturer Part Number
DSPIC30F4011-20E/PT
Description
IC DSPIC MCU/DSP 48K 44TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F4011-20E/PT

Program Memory Type
FLASH
Program Memory Size
48KB (16K x 24)
Package / Case
44-TQFP, 44-VQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
30
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 9x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
30
Data Ram Size
2 KB
Operating Supply Voltage
2.5 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Data Rom Size
1024 B
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300018, DM330011
Minimum Operating Temperature
- 40 C
Package
44TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
20 MHz
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
9-chx10-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT44PT3 - SOCKET TRAN ICE 44MQFP/TQFPAC30F006 - MODULE SKT FOR DSPIC30F 44TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F401120EPT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F4011-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4011-20E/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
dsPIC30F4011/4012
4.2.3
Modulo Addressing can be applied to the Effective
Address (EA) calculation associated with any W register.
It is important to realize that the address boundaries
check for addresses less than or greater than the upper
(for incrementing buffers) and lower (for decrementing
buffers) boundary addresses (not just equal to). Address
changes may, therefore, jump beyond boundaries and
still be adjusted correctly.
4.3
Bit-Reversed Addressing is intended to simplify data
reordering for radix-2 FFT algorithms. It is supported by
the X AGU for data writes only.
The modifier, which may be a constant value or register
contents, is regarded as having its bit order reversed.
The address source and destination are kept in normal
order. Thus, the only operand requiring reversal is the
modifier.
4.3.1
Bit-Reversed Addressing is enabled when:
1.
2.
3.
FIGURE 4-2:
DS70135G-page 40
Note:
BWM (W register selection) in the MODCON reg-
ister is any value other than 15 (the stack can not
be accessed using Bit-Reversed Addressing)
and
The BREN bit is set in the XBREV register and
The addressing mode used is Register Indirect
with Pre-Increment or Post-Increment.
b15 b14 b13 b12
b15 b14 b13 b12
Bit-Reversed Addressing
MODULO ADDRESSING
APPLICABILITY
The modulo corrected Effective Address
is written back to the register only when
Pre-Modify or Post-Modify Addressing
mode is used to compute the Effective
Address. When an address offset (e.g.,
[W7+W2]) is used, Modulo Addressing
correction is performed, but the contents
of the register remain unchanged.
BIT-REVERSED ADDRESSING
IMPLEMENTATION
BIT-REVERSED ADDRESS EXAMPLE
b11 b10 b9 b8
b11 b10 b9 b8
b7 b6 b5 b4
b7 b6 b5 b1
Pivot Point
b3 b2 b1
b2 b3 b4
Sequential Address
Bit-Reversed Address
If the length of a bit-reversed buffer is M = 2
then the last ’N’ bits of the data buffer start address
must be zeros.
XB<14:0> is the Bit-Reversed Addressing modifier, or
‘pivot point’, which is typically a constant. In the case of
an FFT computation, its value is equal to half of the FFT
data buffer size.
When enabled, Bit-Reversed Addressing is only
executed for Register Indirect with Pre-Increment or
Post-Increment Addressing mode and word-sized data
writes. It will not function for any other addressing
mode or for byte-sized data, and normal addresses will
be generated instead. When Bit-Reversed Addressing
is active, the W Address Pointer will always be added
to the address modifier (XB) and the offset associated
with the Register Indirect Addressing mode will be
ignored. In addition, as word-sized data is a
requirement, the LSb of the EA is ignored (and always
clear).
If Bit-Reversed Addressing has already been enabled
by setting the BREN bit (XBREV<15>), then a write to
the XBREV register should not be immediately followed
by an indirect read operation using the W register that
has been designated as the Bit-Reversed Pointer.
Note:
Note:
XB = 0x0008 for a 16-Word Bit-Reversed Buffer
0
0
All bit-reversed EA calculations assume
word-sized data (LSb of every EA is
always clear). The XB value is scaled
accordingly to generate compatible (byte)
addresses.
Modulo Addressing and Bit-Reversed
Addressing
together. In the event that the user
attempts
Addressing will assume priority when
active for the X WAGU, and X WAGU
Modulo Addressing will be disabled.
However,
continue to function in the X RAGU.
Bit Locations Swapped Left-to-Right
Around Center of Binary Value
to
© 2010 Microchip Technology Inc.
Modulo
should
do
this,
not
Addressing
be
Bit-Reversed
enabled
N
bytes,
will

Related parts for DSPIC30F4011-20E/PT