ATMEGA32U4-MU Atmel, ATMEGA32U4-MU Datasheet - Page 67

no-image

ATMEGA32U4-MU

Manufacturer Part Number
ATMEGA32U4-MU
Description
MCU AVR 32K FLASH 16MHZ 44-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32U4-MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
26
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2.5K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 12x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
44-VQFN
Package
44QFN EP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
26
Interface Type
EBI/I2S/SPI/TWI/USART/USB
On-chip Adc
12-chx10-bit
Number Of Timers
5
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600 - DEV KIT FOR AVR/AVR32ATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
ATMEGA32U4-16MU
ATMEGA32U4-16MU

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32U4-MUR
Manufacturer:
UCC
Quantity:
1 001
10.2.2
10.2.3
10.2.4
7766F–AVR–11/10
Toggling the Pin
Switching Between Input and Output
Reading the Pin Value
If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).
Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.
When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) occurs. Normally, the pull-up enabled state is fully acceptable, as
a high-impedance environment will not notice the difference between a strong high driver and a
pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-
ups in all ports.
Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.
Table 10-1
Table 10-1.
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay.
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted t
DDxn
0
0
0
1
1
PORTxn
summarizes the control signals for the pin value.
0
1
1
0
1
Port Pin Configurations
(in MCUCR)
PUD
X
0
1
X
X
Figure
Output
Output
Input
Input
Input
I/O
10-2, the PINxn Register bit and the preceding latch con-
pd,max
Pull-up
Yes
No
No
No
No
and t
Pxn will source current if ext. pulled
low.
Output Low (Sink)
Output High (Source)
Comment
Tri-state (Hi-Z)
Tri-state (Hi-Z)
pd,min
respectively.
Figure 10-3
ATmega16/32U4
shows a timing dia-
67

Related parts for ATMEGA32U4-MU