LPC2468FET208,551 NXP Semiconductors, LPC2468FET208,551 Datasheet - Page 254

IC ARM7 MCU FLASH 512K 208TFBGA

LPC2468FET208,551

Manufacturer Part Number
LPC2468FET208,551
Description
IC ARM7 MCU FLASH 512K 208TFBGA
Manufacturer
NXP Semiconductors
Series
LPC2400r
Datasheets

Specifications of LPC2468FET208,551

Program Memory Type
FLASH
Program Memory Size
512KB (512K x 8)
Package / Case
208-TFBGA
Core Processor
ARM7
Core Size
16/32-Bit
Speed
72MHz
Connectivity
CAN, EBI/EMI, Ethernet, I²C, Microwire, MMC, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT
Number Of I /o
160
Ram Size
98K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 8x10b; D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
LPC24
Core
ARM7TDMI-S
Data Bus Width
16 bit, 32 bit
Data Ram Size
98 KB
Interface Type
CAN/I2S/ISP/SSP/UART/USB
Maximum Clock Frequency
72 MHz
Number Of Programmable I/os
160
Number Of Timers
6
Operating Supply Voltage
3.3 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2, IRD-LPC2468-DEV, SAB-TFBGA208, KSK-LPC2468-PL
Development Tools By Supplier
OM10100
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
On-chip Dac
1-ch x 10-bit
Package
208TFBGA
Device Core
ARM7TDMI-S
Family Name
LPC2000
Maximum Speed
72 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
622-1025 - KIT DEV IND REF DESIGN LPC2468622-1024 - BOARD SCKT ADAPTER FOR TFBGA208568-4358 - DISPLAY QVGA TFT FOR OM10100568-4309 - BOARD EXTENSION LPCSTICK568-4308 - EVAL LPC-STICK WITH LPC2468MCB2400U - BOARD EVAL MCB2400 + ULINK2MCB2400 - BOARD EVAL FOR NXP LPC246X SER622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
568-4262
935283234551
LPC2468FET208-S

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC2468FET208,551
Manufacturer:
NXP
Quantity:
6 174
Part Number:
LPC2468FET208,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
NXP Semiconductors
UM10237_4
User manual
Each time the Tx DMA manager commits a status word to memory it completes the
transmission of a descriptor and it increments the TxConsumeIndex (taking wrap around
into account) to hand the descriptor back to the device driver software. Software can
re-use the descriptor for new transmissions after hardware has handed it back.
The device driver software can keep track of the progress of the DMA manager by reading
the TxConsumeIndex register to see how far along the transmit process is. When the Tx
descriptor array is emptied completely, the TxConsumeIndex register retains its last value.
Write transmission status
After the frame has been transmitted over the (R)MII bus, the StatusInfo word of the frame
descriptor is updated by the DMA manager.
If the descriptor is for the last fragment of a frame (or for the whole frame if there are no
fragments), then depending on the success or failure of the frame transmission, error
flags (Error, LateCollision, ExcessiveCollision, Underrun, ExcessiveDefer, Defer) are set
in the status. The CollisionCount field is set to the number of collisions the frame incurred,
up to the Retransmission Maximum programmed in the Collision window/retry register of
the MAC.
Statuses for all but the last fragment in the frame will be written as soon as the data in the
frame has been accepted by the Tx DMA manager. Even if the descriptor is for a frame
fragment other than the last fragment, the error flags are returned via the AHB interface. If
the Ethernet block detects a transmission error during transmission of a (multi-fragment)
frame, all remaining fragments of the frame are still read via the AHB interface. After an
error, the remaining transmit data is discarded by the Ethernet block. If there are errors
during transmission of a multi-fragment frame the error statuses will be repeated until the
last fragment of the frame. Statuses for all but the last fragment in the frame will be written
as soon as the data in the frame has been accepted by the Tx DMA manager. These may
include error information if the error is detected early enough. The status for the last
fragment in the frame will only be written after the transmission has completed on the
Ethernet connection. Thus, the status for the last fragment will always reflect any error
that occurred anywhere in the frame.
The status of the last frame transmission can also be inspected by reading the TSV0 and
TSV1 registers. These registers do not report statuses on a fragment basis and do not
store information of previously sent frames. They are provided primarily for debug
purposes, because the communication between driver software and the Ethernet block
takes place through the frame descriptors. The status registers are valid as long as the
internal status of the MAC is valid and should typically only be read when the transmit and
receive processes are halted.
Transmission error handling
If an error occurs during the transmit process, the Tx DMA manager will report the error
via the transmission StatusInfo word written in the Status array and the IntStatus interrupt
status register.
The transmission can generate several types of errors: LateCollision, ExcessiveCollision,
ExcessiveDefer, Underrun, and NoDescriptor. All have corresponding bits in the
transmission StatusInfo word. In addition to the separate bits in the StatusInfo word,
LateCollision, ExcessiveCollision, and ExcessiveDefer are ORed together into the Error
bit of the Status. Errors are also propagated to the IntStatus register; the TxError bit in the
Rev. 04 — 26 August 2009
Chapter 11: LPC24XX Ethernet
UM10237
© NXP B.V. 2009. All rights reserved.
254 of 792

Related parts for LPC2468FET208,551