MC68HC11E1CFNE2R Freescale Semiconductor, MC68HC11E1CFNE2R Datasheet - Page 220

IC MCU 8BIT 2MHZ 52-PLCC

MC68HC11E1CFNE2R

Manufacturer Part Number
MC68HC11E1CFNE2R
Description
IC MCU 8BIT 2MHZ 52-PLCC
Manufacturer
Freescale Semiconductor
Series
HC11r
Datasheets

Specifications of MC68HC11E1CFNE2R

Core Processor
HC11
Core Size
8-Bit
Speed
3MHz
Connectivity
SCI, SPI
Peripherals
POR, WDT
Number Of I /o
38
Program Memory Type
ROMless
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
52-PLCC
Controller Family/series
68HC11
No. Of I/o's
38
Eeprom Memory Size
512Byte
Ram Memory Size
512Byte
Cpu Speed
2MHz
No. Of Timers
1
Embedded Interface Type
SCI, SPI
Rohs Compliant
Yes
Processor Series
HC11E
Core
HC11
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
SCI, SPI
Maximum Clock Frequency
2 MHz
Number Of Programmable I/os
38
Number Of Timers
8
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
8 bit, 8 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Program Memory Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68HC11E1CFNE2R
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC68HC11E1CFNE2R2
Manufacturer:
FREESCALE
Quantity:
5 510
Part Number:
MC68HC11E1CFNE2R2
Manufacturer:
MICROCHIP
Quantity:
5 510
Common Bootstrap Mode Problems
Connecting RxD to V
Does Not Cause the SCI to Receive a Break
SS
To force an immediate jump to the start of EEPROM, the bootstrap firmware looks for the first received
character to be $00 (or break). The data reception logic in the SCI looks for a 1-to-0 transition on the RxD
pin to synchronize to the beginning of a receive character. If the RxD pin is tied to ground, no 1-to-0
transition occurs. The SCI transmitter sends a break character when the bootloader firmware starts, and
this break character can be fed back to the RxD pin to cause the jump to EEPROM. Since TxD is
configured as an open-drain output, a pullup resistor is required.
$FF Character Is Required before Loading into RAM
The initial character (usually $FF) that sets the download baud rate is often forgotten.
Original M68HC11 Versions Required Exactly 256 Bytes to be Downloaded to RAM
Even users that know about the 256 bytes of download data sometimes forget the initial $FF that makes
the total number of bytes required for the entire download operation equal to 256 + 1 or 257 bytes.
Variable-Length Download
When on-chip RAM surpassed 256 bytes, the time required to serially load this many characters became
more significant. The variable-length download feature allows shorter programs to be loaded without
sacrificing compatibility with earlier fixed-length download versions of the bootloader. The end of a
download is indicated by an idle RxD line for at least four character times. If a personal computer is being
used to send the download data to the MCU, there can be problems keeping characters close enough
together to avoid tripping the end-of-download detect mechanism. Using 1200 as the baud rate rather
than the faster default rate may help this problem.
Assemblers often produce S-record encoded programs which must be converted to binary before
bootloading them to the MCU. The process of reading S-record data from a file and translating it to binary
can be slow, depending on the personal computer and the programming language used for the
translation. One strategy that can be used to overcome this problem is to translate the file into binary and
store it into a RAM array before starting the download process. Data can then be read and downloaded
without the translation or file-read delays.
The end-of-download mechanism goes into effect when the initial $FF is received to set the baud rate.
Any amount of time may pass between reset and when the $FF is sent to start the download process.
EPROM/OTP Versions of M68HC11 Have an EPROM Emulation Mode
The conditions that configure the MCU for EPROM emulation mode are essentially the same as those for
resetting the MCU in bootstrap mode. While RESET is low and mode select pins are configured for
bootstrap mode (low), the MCU is configured for EPROM emulation mode.
The port pins that are used for EPROM data I/O lines may be inputs or outputs, depending on the pin that
is emulating the EPROM output enable pin (OE). To make these data pins appear as high-impedance
inputs as they would on a non-EPROM part in reset, connect the PB7/(OE) pin to a pullup resistor.
M68HC11 Bootstrap Mode, Rev. 1.1
220
Freescale Semiconductor

Related parts for MC68HC11E1CFNE2R