IC MCU 128K 6MHZ A/D IT 64TQFP

ATMEGA103-6AI

Manufacturer Part NumberATMEGA103-6AI
DescriptionIC MCU 128K 6MHZ A/D IT 64TQFP
ManufacturerAtmel
SeriesAVR® ATmega
ATMEGA103-6AI datasheets
 


Specifications of ATMEGA103-6AI

Core ProcessorAVRCore Size8-Bit
Speed6MHzConnectivitySPI, UART/USART
PeripheralsPOR, PWM, WDTNumber Of I /o32
Program Memory Size128KB (64K x 16)Program Memory TypeFLASH
Eeprom Size4K x 8Ram Size4K x 8
Voltage - Supply (vcc/vdd)4 V ~ 5.5 VData ConvertersA/D 8x10b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Package / Case64-TQFP, 64-VQFPFor Use WithATSTK501 - ADAPTER KIT FOR 64PIN AVR MCU
Lead Free Status / RoHS StatusContains lead / RoHS non-compliant  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
Page 121
122
Page 122
123
Page 123
124
Page 124
125
Page 125
126
Page 126
127
Page 127
128
Page 128
129
Page 129
130
Page 130
131
132
133
134
135
136
137
138
139
140
141
Page 123/141

Download datasheet (3Mb)Embed
PrevNext
Typical
Characteristics
0945I–AVR–02/07
The following charts show typical behavior. These figures are not tested during manu-
facturing. All current consumption measurements are performed with all I/O pins
configured as inputs and with internal pull-ups enabled. All pins on Port F are pulled high
externally. A sine wave generator with rail-to-rail output is used as clock source.
The power consumption in Power-down mode is independent of clock selection.
The current consumption is a function of several factors such as: operating voltage,
operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and
ambient temperature. The dominating factors are operating voltage and frequency.
The current drawn from capacitive loaded pins may be estimated (for one pin) as C
V
• f, where C
= load capacitance, V
CC
L
frequency of I/O pin.
The parts are characterized at frequencies higher than test limits. Parts are not guaran-
teed to function properly at frequencies higher than the ordering code indicates.
The difference between current consumption in Power-down mode with Watchdog
Timer enabled and Power-down mode with Watchdog Timer disabled represents the dif-
ferential current drawn by the Watchdog Timer.
Figure 81. Active Supply Current vs. Frequency
ACTIVE SUPPLY CURRENT vs. FREQUENCY
50
45
40
35
30
25
20
15
10
5
0
0
1
2
3
4
5
ATmega103(L)
= operating voltage and f = average switching
CC
T = 25˚C
A
V
= 3.6V
cc
V
= 3.3V
cc
V
= 3.0V
cc
V
= 2.7V
cc
6
7
8
9
10
11
12
13
Frequency (MHz)
L
V
= 6V
cc
V
= 5.5V
cc
V
= 5V
cc
V
= 4.5V
cc
V
= 4V
cc
14
15
123