OP471GS Analog Devices Inc, OP471GS Datasheet - Page 12

no-image

OP471GS

Manufacturer Part Number
OP471GS
Description
IC OPAMP GP 6.5MHZ QUAD 16SOIC
Manufacturer
Analog Devices Inc
Datasheet

Specifications of OP471GS

Slew Rate
8 V/µs
Amplifier Type
General Purpose
Rohs Status
RoHS non-compliant
Number Of Circuits
4
Gain Bandwidth Product
6.5MHz
Current - Input Bias
25nA
Voltage - Input Offset
1000µV
Current - Supply
9.2mA
Voltage - Supply, Single/dual (±)
±4.5 V ~ 18 V
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
16-SOIC (0.300", 7.5mm Width)
Op Amp Type
High Speed
No. Of Amplifiers
4
Bandwidth
6.5MHz
No. Of Pins
14
Operating Temperature Range
-40°C To +85°C
Settling Time
4.5ns
Rail/rail I/o Type
No
Number Of Elements
4
Unity Gain Bandwidth Product
6.5MHz
Common Mode Rejection Ratio
95dB
Input Offset Voltage
1.8@±15VmV
Input Bias Current
60nA
Single Supply Voltage (typ)
Not RequiredV
Dual Supply Voltage (typ)
±5/±9/±12/±15V
Voltage Gain In Db
113.98dB
Power Supply Rejection Ratio
105.04dB
Power Supply Requirement
Dual
Shut Down Feature
No
Single Supply Voltage (min)
Not RequiredV
Single Supply Voltage (max)
Not RequiredV
Dual Supply Voltage (min)
±4.5V
Dual Supply Voltage (max)
±18V
Technology
Bipolar
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
16
Package Type
SOIC W
Output Type
-
Current - Output / Channel
-
-3db Bandwidth
-
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
OP471GS
Manufacturer:
PMI
Quantity:
5 510
Part Number:
OP471GS
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
OP471GSZ
Manufacturer:
ADI
Quantity:
120
Part Number:
OP471GSZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
OP471GSZ-REEL
Manufacturer:
ADI/亚德诺
Quantity:
20 000
OP471
Quad Programmable Gain Amplifier
The combination of the quad OP471 and the DAC8408, a quad
8-bit CMOS DAC, creates a space-saving quad programmable gain
amplifier. The digital code present at the DAC, which is easily
set by a microprocessor, determines the ratio between the fixed
DAC feedback resistor and the impedance the DAC ladder presents
to the op amp feedback loop. Gain of each amplifier is:
V
PINS 9 (LSB) – 16 (MSB)
V
OUT
IN
DAC DATA BUS
= –
V
V
V
V
IN
IN
IN
IN
A
B
C
D
256
n
Figure 17. Quad Programmable Gain Amplifier
R
R
R
R
FB
FB
FB
FB
DAC-8408ET
A
B
C
D
DGND
DAC A
DAC B
DAC C
DAC D
–12–
V
DD
where n equals the decimal equivalent of the 8-bit digital code
present at the DAC. If the digital code present at the DAC
consists of all zeros, the feedback loop will be open causing the
op amp output to saturate. The 20 MW resistors placed in parallel
with the DAC feedback loop eliminates this problem with a very
small reduction in gain accuracy.
I
I
OUT2A/2B
OUT2C/2D
I
I
I
V
I
V
OUT1A
OUT1B
V
OUT1C
OUT1D
V
REF
REF
REF
REF
B
D
C
A
R1
20M
R2
20M
R3
20M
R4
20M
1/4
OP470E
1/4
OP470E
1/4
OP470E
1/4
OP470E
+15V
–15V
V
V
V
V
OUT
OUT
OUT
OUT
A
B
C
D
REV. A

Related parts for OP471GS