DSP56303VL100 Freescale Semiconductor, DSP56303VL100 Datasheet - Page 11

IC DSP 24BIT 100MHZ 196-MAPBGA

DSP56303VL100

Manufacturer Part Number
DSP56303VL100
Description
IC DSP 24BIT 100MHZ 196-MAPBGA
Manufacturer
Freescale Semiconductor
Series
DSP563xxr
Type
Fixed Pointr
Datasheet

Specifications of DSP56303VL100

Interface
Host Interface, SSI, SCI
Clock Rate
100MHz
Non-volatile Memory
ROM (576 B)
On-chip Ram
24kB
Voltage - I/o
3.30V
Voltage - Core
3.30V
Operating Temperature
-40°C ~ 100°C
Mounting Type
Surface Mount
Package / Case
196-MAPBGA
Device Core Size
24b
Format
Fixed Point
Clock Freq (max)
100MHz
Mips
100
Device Input Clock Speed
100MHz
Ram Size
24KB
Program Memory Size
Not RequiredKB
Operating Supply Voltage (typ)
3.3V
Operating Supply Voltage (min)
3V
Operating Supply Voltage (max)
3.6V
Operating Temp Range
-40C to 100C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
196
Package Type
MA-BGA
Package
196MA-BGA
Maximum Speed
100 MHz
Device Million Instructions Per Second
100 MIPS
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSP56303VL100
Manufacturer:
FUJI
Quantity:
1 000
Part Number:
DSP56303VL100
Manufacturer:
FREESCALE
Quantity:
672
Part Number:
DSP56303VL100
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
DSP56303VL100B1
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
1.6 Interrupt and Mode Control
The interrupt and mode control signals select the chip operating mode as it comes out of hardware reset. After
RESET is deasserted, these inputs are hardware interrupt request lines.
Freescale Semiconductor
RESET
MODA
IRQA
MODB
IRQB
MODC
IRQC
MODD
IRQD
Note: These signals are all 5 V tolerant.
Signal Name
Input
Input
Input
Input
Input
Input
Input
Input
Input
Type
Schmitt-trigger
Input
Schmitt-trigger
Input
Schmitt-trigger
Input
Schmitt-trigger
Input
Schmitt-trigger
Input
State During
Reset
Table 1-9.
DSP56303 Technical Data, Rev. 11
Reset—Places the chip in the Reset state and resets the internal phase
generator. The Schmitt-trigger input allows a slowly rising input (such as a
capacitor charging) to reset the chip reliably. When the RESET signal is
deasserted, the initial chip operating mode is latched from the MODA, MODB,
MODC, and MODD inputs. The RESET signal must be asserted after powerup.
Mode Select A—MODA, MODB, MODC, and MODD select one of 16 initial
chip operating modes, latched into the Operating Mode Register when the
RESET signal is deasserted.
External Interrupt Request A—After reset, this input becomes a level-
sensitive or negative-edge-triggered, maskable interrupt request input during
normal instruction processing. If the processor is in the STOP or WAIT standby
state and IRQA is asserted, the processor exits the STOP or WAIT state.
Mode Select B—MODA, MODB, MODC, and MODD select one of 16 initial
chip operating modes, latched into the Operating Mode Register when the
RESET signal is deasserted.
External Interrupt Request B—After reset, this input becomes a level-
sensitive or negative-edge-triggered, maskable interrupt request input during
normal instruction processing. If the processor is in the WAIT standby state and
IRQB is asserted, the processor exits the WAIT state.
Mode Select C—MODA, MODB, MODC, and MODD select one of 16 initial
chip operating modes, latched into the Operating Mode Register when the
RESET signal is deasserted.
External Interrupt Request C—After reset, this input becomes a level-
sensitive or negative-edge-triggered, maskable interrupt request input during
normal instruction processing. If the processor is in the WAIT standby state and
IRQC is asserted, the processor exits the WAIT state.
Mode Select D—MODA, MODB, MODC, and MODD select one of 16 initial
chip operating modes, latched into the Operating Mode Register when the
RESET signal is deasserted.
External Interrupt Request D—After reset, this input becomes a level-
sensitive or negative-edge-triggered, maskable interrupt request input during
normal instruction processing. If the processor is in the WAIT standby state and
IRQD is asserted, the processor exits the WAIT state.
Interrupt and Mode Control
Signal Description
Interrupt and Mode Control
1-7

Related parts for DSP56303VL100