ATA5773-PXQW Atmel, ATA5773-PXQW Datasheet - Page 113

XMITTR UHF ASK/FSK 310MHZ 24VQFN

ATA5773-PXQW

Manufacturer Part Number
ATA5773-PXQW
Description
XMITTR UHF ASK/FSK 310MHZ 24VQFN
Manufacturer
Atmel
Datasheet

Specifications of ATA5773-PXQW

Frequency
310MHz ~ 350MHz
Modulation Or Protocol
UHF
Power - Output
8dBm
Voltage - Supply
2 V ~ 4 V
Current - Transmitting
9.8mA
Data Interface
PCB, Surface Mount
Memory Size
4kB Flash, 256B EEPROM, 256B SRAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
24-VQFN Exposed Pad, 24-HVQFN, 24-SQFN, 24-DHVQFN
Processor Series
ATA5x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
4 KB
Data Ram Size
256 B
Interface Type
SPI, USI
Maximum Clock Frequency
4 MHz
Number Of Programmable I/os
12
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 12 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Applications
-
Sensitivity
-
Data Rate - Maximum
-
Current - Receiving
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATA5773-PXQW
Manufacturer:
ATMEL
Quantity:
3 500
Part Number:
ATA5773-PXQW
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
9137E–RKE–12/10
Figure 4-45. Phase and Frequency Correct PWM Mode, Timing Diagram
The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x
Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or
ICR1 is used for defining the TOP value, the OC1A or ICF1 flag set when TCNT1 has reached
TOP. The interrupt flags can then be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.
When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
As
rical in all periods. Since the OCR1x Registers are updated at BOTTOM, the length of the
rising and the falling slopes will always be equal. This gives symmetrical output pulses and is
therefore frequency correct.
Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. How-
ever, if the base PWM frequency is actively changed by changing the TOP value, using the
OCR1A as TOP is clearly a better choice due to its double buffer feature.
In phase and frequency correct PWM mode, the compare units allow generation of PWM
waveforms on the OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted
PWM and an inverted PWM output can be generated by setting the COM1x1:0 to three (See
Table 4-41 on page
direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by
setting (or clearing) the OC1x Register at the compare match between OCR1x and TCNT1
when the counter increments, and clearing (or setting) the OC1x Register at compare match
between OCR1x and TCNT1 when the counter decrements. The PWM frequency for the out-
put when using phase and frequency correct PWM can be calculated by the following
equation:
Figure 4-45
TCNTn
OCnx
OCnx
Period
shows the output generated is, in contrast to the phase correct mode, symmet-
117). The actual OC1x value will only be visible on the port pin if the data
1
f
OCnxPFCPWM
2
=
3
---------------------------------
2
f
clk_I/O
N
Atmel ATA5771/73/74
TOP
4
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)
(COMnx1:0 = 2)
(COMnx1:0 = 3)
OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)
113

Related parts for ATA5773-PXQW