IC RF TXRX SNGL-CHIP LP 20-QFN

CC2500-RTR1

Manufacturer Part NumberCC2500-RTR1
DescriptionIC RF TXRX SNGL-CHIP LP 20-QFN
ManufacturerTexas Instruments
CC2500-RTR1 datasheet
 


Specifications of CC2500-RTR1

Frequency2.4GHzData Rate - Maximum500kBaud
Modulation Or Protocol2-FSK, ASK, GFSK, MSK, OOKApplicationsISM, SRD
Power - Output-30dBm ~ 10dBmSensitivity-104dBm
Voltage - Supply1.8 V ~ 3.6 VCurrent - Receiving17mA
Current - Transmitting21.5mA @ 1 dBmData InterfacePCB, Surface Mount
Antenna ConnectorPCB, Surface MountOperating Temperature-40°C ~ 85°C
Package / Case20-VQFN Exposed Pad, 20-HVQFN, 20-SQFN, 20-DHVQFNOperating Temperature (min)-40C
Operating Temperature (max)85COperating Temperature ClassificationIndustrial
Product Depth (mm)4mmProduct Length (mm)4mm
Operating Supply Voltage (min)1.8VOperating Supply Voltage (typ)2.5/3.3V
Operating Supply Voltage (max)3.6VFor Use With296-24121 - DEV WRLSS TOOL FOR MSP430296-23125 - TARGET BRD WIRELESS EZ430-RF2500296-23031 - DEV WRLSS TOOL FOR MSP430/CC2500296-22903 - KIT EVAL MODULE FOR CC2500296-23077 - KIT DEV FOR CC2500/CC2550
Lead Free Status / RoHS StatusContains lead / RoHS non-compliantMemory Size-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Page 31
32
Page 32
33
Page 33
34
Page 34
35
Page 35
36
Page 36
37
Page 37
38
Page 38
39
Page 39
40
Page 40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Page 40/96

Download datasheet (3Mb)Embed
PrevNext
19.1.1 Automatic POR
A power-on reset circuit is included in the
CC2500 . The minimum requirements stated in
Section 4.9 must be followed for the power-on
reset to function properly. The internal power-
up sequence is completed when CHIP_RDYn
goes low. CHIP_RDYn is observed on the SO
pin after CSn is pulled low. See Section 10.1
for more details on CHIP_RDYn.
When the CC2500 reset is completed the chip
will be in the IDLE state and the crystal
oscillator will be running. If the chip has had
sufficient time for the crystal oscillator to
stabilize after the power-on-reset, the SO pin
will go low immediately after taking CSn low. If
CSn is taken low before reset is completed the
SO pin will first go high, indicating that the
crystal oscillator is not stabilized, before going
low as shown in Figure 16.
Figure 16: Power-On Reset
19.1.2 Manual Reset
The other global reset possibility on CC2500 is
the SRES command strobe. By issuing this
strobe, all internal registers and states are set
to the default, IDLE state. The manual power-
up sequence is as follows (see Figure 17):
Set SCLK=1 and SI=0, to avoid potential
problems with pin control mode (see
Section 11.3 on page 26).
Strobe CSn low / high.
Hold CSn high for at least 40 µs relative to
pulling CSn low
Pull CSn low and wait for SO to go low
(CHIP_RDYn).
Issue the SRES strobe on the SI line.
When SO goes low again, reset is
complete and the chip is in the IDLE state.
XOSC and voltage regulator switched on
40 us
CSn
SO
SI
Figure 17: Power-On Reset with SRES
Note that the above reset procedure is only
required just after the power supply is first
turned on. If the user wants to reset the
CC2500 after this, it is only necessary to issue
an SRES command strobe.
19.2
Crystal Control
The
crystal
oscillator
automatically controlled or always on, if
MCSM0.XOSC_FORCE_ON is set.
In the automatic mode, the XOSC will be
turned off if the SXOFF or SPWD command
strobes are issued; the state machine then
goes to XOFF or SLEEP respectively. This
can only be done from the IDLE state. The
XOSC will be turned off when CSn is released
(goes high). The XOSC will be automatically
turned on again when CSn goes low. The state
machine will then go to the IDLE state. The SO
pin on the SPI interface must be pulled low
before the SPI interface is ready to be used;
as described in Section 10.1 on page 22.
If the XOSC is forced on, the crystal will
always stay on even in the SLEEP state.
Crystal oscillator start-up time depends on
crystal ESR and load capacitances. The
electrical specification for the crystal oscillator
can be found in Section 4.4 on page 12.
19.3
Voltage Regulator Control
The voltage regulator to the digital core is
controlled by the radio controller. When the
chip enters the SLEEP state, which is the state
with the lowest current consumption, the
voltage regulator is disabled. This occurs after
CSn is released when a SPWD command
strobe has been sent on the SPI interface. The
chip is now in the SLEEP state. Setting CSn
low again will turn on the regulator and crystal
SWRS040C
XOSC Stable
SRES
(XOSC)
is
either
Page 40 of 89