ATA8742-PXQW Atmel, ATA8742-PXQW Datasheet - Page 144

MCU W/TRANSMITTER ASK/FSK 24QFN

ATA8742-PXQW

Manufacturer Part Number
ATA8742-PXQW
Description
MCU W/TRANSMITTER ASK/FSK 24QFN
Manufacturer
Atmel
Datasheet

Specifications of ATA8742-PXQW

Frequency
433MHz
Applications
Home Automation, Remote Sensing, RKE
Modulation Or Protocol
ASK, FSK
Data Rate - Maximum
32 kBit/s
Power - Output
7.5dBm
Current - Transmitting
9.8mA
Data Interface
PCB, Surface Mount
Antenna Connector
PCB, Surface Mount
Memory Size
4kB Flash, 256B EEPROM, 256B SRAM
Voltage - Supply
2 V ~ 4 V
Operating Temperature
-40°C ~ 85°C
Package / Case
24-VQFN Exposed Pad, 24-HVQFN, 24-SQFN, 24-DHVQFN
Processor Series
ATA8x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
4 KB
Data Ram Size
256 B
Interface Type
SPI, USI
Maximum Clock Frequency
8.1 MHz
Number Of Programmable I/os
12
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Development Tools By Supplier
ATASTK512-EK1-IND
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Features
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATA8742-PXQW
Manufacturer:
ATMEL
Quantity:
1 482
144
ATA8742
Figure 23-5. Two-wire Mode, Typical Timing Diagram
Referring to the timing diagram
steps:
1. The a start condition is generated by the Master by forcing the SDA low line while the
2. In addition, the start detector will hold the SCL line low after the Master has forced an
3. The Master set the first bit to be transferred and releases the SCL line (C). The Slave
4. After eight bits are transferred containing slave address and data direction (read or
5. If the Slave is addressed it holds the SDA line low during the acknowledgment cycle
6. Multiple bytes can now be transmitted, all in same direction, until a stop condition is given
If the Slave is not able to receive more data it does not acknowledge the data byte it has last
received. When the Master does a read operation it must terminate the operation by force the
acknowledge bit low after the last byte transmitted.
Figure 23-6. Start Condition Detector, Logic Diagram
SCL line is high (A). SDA can be forced low either by writing a zero to bit 7 of the Shift
Register, or by setting the corresponding bit in the PORT Register to zero. Note that the
Data Direction Register bit must be set to one for the output to be enabled. The slave
device’s start detector logic
sets the USISIF Flag. The flag can generate an interrupt if necessary.
negative edge on this line (B). This allows the Slave to wake up from sleep or complete
its other tasks before setting up the Shift Register to receive the address. This is done by
clearing the start condition flag and reset the counter.
samples the data and shift it into the Serial Register at the positive edge of the SCL
clock.
write), the Slave counter overflows and the SCL line is forced low (D). If the slave is not
the one the Master has addressed, it releases the SCL line and waits for a new start
condition.
before holding the SCL line low again (i.e., the Counter Register must be set to 14 before
releasing SCL at (D)). Depending of the R/W bit the Master or Slave enables its output. If
the bit is set, a master read operation is in progress (i.e., the slave drives the SDA line)
The slave can hold the SCL line low after the acknowledge (E).
by the Master (F). Or a new start condition is given.
SDA
SCL
Write( USISIF)
S
A B
C
ADDRESS
SDA
SCL
1 - 7
(Figure 23-5 on page
(Figure 23-6 on page
R/W
8
D
ACK
9
E
DATA
1 - 8
D Q
144) detects the start condition and
144), a bus transfer involves the following
CLR
ACK
9
D Q
CLR
DATA
1 - 8
USISIF
CLOCK
HOLD
ACK
9
9151A–INDCO–07/09
F
P

Related parts for ATA8742-PXQW