ATA8742-PXQW Atmel, ATA8742-PXQW Datasheet - Page 158

MCU W/TRANSMITTER ASK/FSK 24QFN

ATA8742-PXQW

Manufacturer Part Number
ATA8742-PXQW
Description
MCU W/TRANSMITTER ASK/FSK 24QFN
Manufacturer
Atmel
Datasheet

Specifications of ATA8742-PXQW

Frequency
433MHz
Applications
Home Automation, Remote Sensing, RKE
Modulation Or Protocol
ASK, FSK
Data Rate - Maximum
32 kBit/s
Power - Output
7.5dBm
Current - Transmitting
9.8mA
Data Interface
PCB, Surface Mount
Antenna Connector
PCB, Surface Mount
Memory Size
4kB Flash, 256B EEPROM, 256B SRAM
Voltage - Supply
2 V ~ 4 V
Operating Temperature
-40°C ~ 85°C
Package / Case
24-VQFN Exposed Pad, 24-HVQFN, 24-SQFN, 24-DHVQFN
Processor Series
ATA8x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
4 KB
Data Ram Size
256 B
Interface Type
SPI, USI
Maximum Clock Frequency
8.1 MHz
Number Of Programmable I/os
12
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Development Tools By Supplier
ATASTK512-EK1-IND
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Features
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATA8742-PXQW
Manufacturer:
ATMEL
Quantity:
1 482
158
ATA8742
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.
When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle.
A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.
The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 14.5 ADC clock cycles after the start of an first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge.
When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic.
In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see
159.
Figure 25-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)
Figure 25-5. ADC Timing Diagram, Single Conversion
Cycle Number
ADC Clock
ADSC
ADIF
ADCH
ADCL
Cycle Number
ADC Clock
ADEN
ADSC
ADIF
ADCH
ADCL
1
1
2
MUX and REFS
Update
2
MUX and REFS
Update
12
3
13
Sample & Hold
4
14
5
15
6
Sample & Hold
16
First Conversion
17
7
One Conversion
18
8
19
9
20
10
Conversion
Complete
21
11
22
Conversion
Complete
23
12
24
13
25
Sign and MSB of Result
Sign and MSB of Result
LSB of Result
Table 25-1 on page
Next Conversion
1
Next
Conversion
1
LSB of Result
9151A–INDCO–07/09
2
2
MUX and REFS
Update
MUX and REFS
Update
3
3

Related parts for ATA8742-PXQW