A3PN125-ZVQG100 Actel, A3PN125-ZVQG100 Datasheet

FPGA - Field Programmable Gate Array 125K System Gates ProASIC3 nano

A3PN125-ZVQG100

Manufacturer Part Number
A3PN125-ZVQG100
Description
FPGA - Field Programmable Gate Array 125K System Gates ProASIC3 nano
Manufacturer
Actel
Datasheet

Specifications of A3PN125-ZVQG100

Processor Series
A3PN125
Core
IP Core
Number Of Macrocells
1024
Maximum Operating Frequency
350 MHz
Number Of Programmable I/os
71
Data Ram Size
36 Kbit
Delay Time
1.02 ns
Supply Voltage (max)
3.3 V
Supply Current
2 mA
Maximum Operating Temperature
+ 70 C
Minimum Operating Temperature
- 20 C
Development Tools By Supplier
AGLN-Nano-Kit, AGLN-Z-Nano-Kit, Silicon-Explorer II, Silicon-Sculptor 3, SI-EX-TCA, FloasPro 4, FlashPro 3, FlashPro Lite
Mounting Style
SMD/SMT
Supply Voltage (min)
1.5 V
Number Of Gates
125 K
Package / Case
VQFP-100
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
A3PN125-ZVQG100
Manufacturer:
Microsemi SoC
Quantity:
10 000
Part Number:
A3PN125-ZVQG100I
Manufacturer:
Microsemi SoC
Quantity:
10 000
April 2010
© 2010 Actel Corporation
ProASIC3 nano Flash FPGAs
Features and Benefits
Wide Range of Features
Reprogrammable Flash Technology
High Performance
In-System Programming (ISP) and Security
Low Power
High-Performance Routing Hierarchy
Table 1 • ProASIC3 nano Devices
ProASIC3 nano Devices
ProASIC3 nano-Z Devices
System Gates
Typical Equivalent Macrocells
VersaTiles (D-flip-flops)
RAM Kbits (1,024 bits)
4,608-Bit Blocks
FlashROM Kbits
Secure (AES) ISP
Integrated PLL in CCCs
VersaNet Globals
I/O Banks
Maximum User I/Os (packaged device)
Maximum User I/Os (Known Good Die)
Package Pins
Notes:
1. A3PN030 is available in the Z feature grade only.
2. A3PN030 and smaller devices do not support this feature.
3. For higher densities and support of additional features, refer to the
• 10 k to 250 k System Gates
• Up to 36 kbits of True Dual-Port SRAM
• Up to 71 User I/Os
• 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS
• Live at Power-Up (LAPU) Level 0 Support
• Single-Chip Solution
• Retains Programmed Design when Powered Off
• 350 MHz System Performance
• Secure ISP Using On-Chip 128-Bit Advanced Encryption
• FlashLock
• Low Power ProASIC
• 1.5 V Core Voltage for Low Power
• Support for 1.5 V-Only Systems
• Low-Impedance Flash Switches
• Segmented, Hierarchical Routing and Clock Structure
† A3PN030 and smaller devices do not support this feature.
QFN
VQFP
Process
Standard (AES) Decryption via JTAG (IEEE 1532–compliant)
®
to Secure FPGA Contents
2
2
2
2
®
3 nano Products
A3PN010
10,000
QN48
260
86
34
34
1
4
2
A3PN015
15,000
QN68
128
384
49
1
4
3
ProASIC3
A3PN020
Advanced I/Os
Clock Conditioning Circuit (CCC) and PLL
Embedded Memory
Enhanced Commercial Temperature Range
20,000
• 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation
• Bank-Selectable I/O Voltages—up to 4 Banks per Chip
• Single-Ended
• Wide Range Power Supply Voltage Support per JESD8-B,
• I/O Registers on Input, Output, and Enable Paths
• Selectable Schmitt Trigger Inputs
• Hot-Swappable and Cold-Sparing I/Os
• Programmable Output Slew Rate
• Weak Pull-Up/-Down
• IEEE 1149.1 (JTAG) Boundary Scan Test
• Pin-Compatible Packages across the ProASIC3 Family
• Up to Six CCC Blocks, One with an Integrated PLL
• Configurable Phase Shift, Multiply/Divide, Delay
• Wide Input Frequency Range (1.5 MHz to 350 MHz)
• 1 kbit of FlashROM User Nonvolatile Memory
• SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit RAM
• True Dual-Port SRAM (except ×18 organization)
• –20°C to +70°C
QN68
172
520
49
52
1
4
3
2.5 V / 1.8 V / 1.5 V
Allowing I/Os to Operate from 2.7 V to 3.6 V
Capabilities and External Feedback
Blocks (×1, ×2, ×4, ×9, and ×18 organizations)
and
QN48, QN68
A3PN030Z
ProASIC3E
30,000
VQ100
256
768
77
83
6
2
1
I/O
1
Standards:
datasheets.
A3PN060Z A3PN125Z
A3PN060
VQ100
60,000
1,536
512
Yes
18
18
71
71
4
1
1
2
and Drive Strength
LVTTL,
A3PN125
125,000
VQ100
1,024
3,072
Yes
36
18
71
71
8
1
1
2
LVCMOS
Revision 8
A3PN250
A3N250Z
250,000
VQ100
2,048
6,144
Yes
36
18
68
68
8
1
1
4
3.3 V /
®
I

Related parts for A3PN125-ZVQG100

A3PN125-ZVQG100 Summary of contents

Page 1

... QN48 QN68 QN68 ProASIC3 and Revision 8 I/O Standards: LVTTL, LVCMOS † and Drive Strength † † A3PN060 A3PN125 1 A3PN030Z A3PN060Z A3PN125Z 30,000 60,000 125,000 256 512 1,024 768 1,536 3,072 – – – Yes Yes – ...

Page 2

... Status ProASIC3 nano-Z Devices Production Production Production A3PN030Z Advance A3PN060Z Advance A3PN125Z Production A3PN250Z A3PN060 A3PN125 A3PN250 1 A3PN060 A3PN125Z A3PN250Z – – – – – – ProASIC3 FPGA Fabric User’s Guide for the location of the "G" QN68 VQ100 ...

Page 3

... A3PN250 = 250,000 System Gates Note: *For the A3PN060, A3PN125, and A3PN250, the Z feature grade does not support the enhanced nano features of Schmitt trigger input, cold-sparing, and hot-swap I/O capability. The A3PN030 Z feature grade does not support Schmitt trigger input. For the VQ100, CS81, UC81, QN68, and QN48 packages, the Z feature grade and the N part number are not marked on the device ...

Page 4

... VQ100 VQ100 A3PN015 A3PN020 A3PN030Z – – – – Country of Origin Date Code Customer Mark (if applicable) A3PN125 A3PN250 – – VQ100 VQ100 A3PN060 A3PN125 1 A3PN060Z A3PN125Z C, I – – – – Std. ✓ ✓ – – A3PN250 A3PN250Z – – ...

Page 5

... Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53 Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57 Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59 Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69 JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70 Actel Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70 Package Pin Assignments 48-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 68-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 100-Pin VQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 Datasheet Information List of Changes ...

Page 6

...

Page 7

... ASIC migration at higher user volumes. This makes the ProASIC3 nano device a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets. With a variety of devices under $1, Actel ProASIC3 nano FPGAs enable cost-effective implementation of programmable logic and quick time to market. Security Nonvolatile, flash-based ProASIC3 nano devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied ...

Page 8

... Live at Power-Up Actel flash-based ProASIC3 nano devices support Level 0 of the LAPU classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The ...

Page 9

Dedicated FlashROM • Dedicated SRAM/FIFO memory • Extensive CCCs and PLLs • Advanced I/O structure User Nonvolatile FlashROM Note: *Bank 0 for the A3PN030 device Figure 1-1 • ProASIC3 Device Architecture Overview with Two I/O Banks and No RAM ...

Page 10

... ProASIC3 nano Device Overview ISP AES User Nonvolatile Decryption Figure 1-3 • ProASIC3 nano Device Architecture Overview with Two I/O Banks (A3PN060 and A3PN125) ISP AES User Nonvolatile Decryption Figure 1-4 • ProASIC3 nano Device Architecture Overview with Four I/O Banks (A3PN250) The FPGA core consists of a sea of VersaTiles ...

Page 11

... X2 LUT-3 CLK Y X3 Figure 1-5 • VersaTile Configurations User Nonvolatile FlashROM Actel ProASIC3 nano devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications: • Internet protocol addressing (wireless or fixed) • System calibration settings • Device serialization and/or inventory control • ...

Page 12

... Higher density ProASIC3 nano devices using either the two I/O bank or four I/O bank architectures provide the designer with very flexible clock conditioning capabilities. A3PN060, A3PN125, and A3PN250 contain six CCCs. One CCC (center west side) has a PLL. The A3PN030 and smaller devices use different CCCs in their architecture ...

Page 13

... Each I/O module contains several input, output, and enable registers. These registers allow the implementation of various single-data-rate applications for all versions of nano devices and double-data- rate applications for the A3PN060, A3PN125, and A3PN250 devices. ProASIC3 nano devices support LVTTL and LVCMOS I/O standards, are hot-swappable, and support cold-sparing and Schmitt trigger ...

Page 14

...

Page 15

ProASIC3 nano DC and Switching Characteristics General Specifications The Z feature grade does not support the enhanced nano features of Schmitt trigger input, cold-sparing, and hot-swap I/O capability. Refer to the more information. DC and switching characteristics for ...

Page 16

... All parameters representing voltages are measured with respect to GND unless otherwise specified ensure targeted reliability standards are met across ambient and junction operating temperatures, Actel recommends that the user follow best design practices using Actel’s timing and power simulation tools. ...

Page 17

... JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior. PLL Behavior at Brownout Condition Actel recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLLX exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see for more details). When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± ...

Page 18

ProASIC3 nano DC and Switching Characteristics Internal Power-Up Activation Sequence 1. Core 2. Input buffers 3. Output buffers, after 200 ns delay from input buffer activation VCC = VCCI + VT where VT can be from 0. 0.9 ...

Page 19

... Thermal Characteristics Introduction The temperature variable in the Actel Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature can be used to calculate junction temperature. ...

Page 20

... All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification A3PN010 A3PN015 A3PN020 A3PN060 600 µ VCCI (V) 3.3 3.3 2 3.3 3.3 2.5 2.5 1.8 1.8 1.5 1 A3PN125 A3PN250 Dynamic Power, P (µW/MHz) AC9 16.45 18.93 16.45 18.93 4.73 6.14 1.68 1.80 0.99 0.96 ...

Page 21

... V LVCMOS (JESD8-11) Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. Values for A3PN020, A3PN015, and A3PN010. A3PN060, A3PN125, and A3PN250 correspond to a default loading the total dynamic power measured on VCCI. AC10 4 ...

Page 22

... DC4 P Bank quiescent power (VCCI-dependent) DC5 Notes: 1. Minimum contribution of the PLL when running at lowest frequency. 2. For a different output load, drive strength, or slew rate, Actel recommends using the Actel Power spreadsheet calculator or SmartPower tool in Libero IDE Device Specific Dynamic Contributions Definition 11.03 1.58 ® ...

Page 23

... Power Calculation Methodology This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Actel Libero IDE software. The power calculation methodology described below uses the following variables: • The number of PLLs as well as the number and the frequency of each output clock generated • ...

Page 24

ProASIC3 nano DC and Switching Characteristics Combinatorial Cells Contribution— C-CELL C-CELL N is the number of VersaTiles used as combinatorial modules in the design. C-CELL α is the toggle rate of VersaTile outputs—guidelines are provided in 1 ...

Page 25

Guidelines Toggle Rate Definition A toggle rate defines the frequency of a net or logic element relative to a clock percentage. If the toggle rate of a net is 100%, this means that this net switches at ...

Page 26

ProASIC3 nano DC and Switching Characteristics User I/O Characteristics Timing Model I/O Module (Registered 1. Input LVCMOS 2 0.24 ns ICLKQ t = 0.26 ns ISUD Input LVTTL Clock t = ...

Page 27

PY PAD t = MAX MAX(t DIN V trip PAD 50% Y GND t PY (R) DIN GND Figure 2-3 • Input Buffer Timing Model and Delays (example) t DIN CLK I/O Interface ...

Page 28

ProASIC3 nano DC and Switching Characteristics D CLK D From Array I/O Interface D DOUT PAD Figure 2-4 • Output Buffer Model and Delays (example DOUT Q DOUT t = MAX MAX(t DOUT ...

Page 29

EOUT D Q CLK CLK D I/O Interface D 50 EOUT (R) 50% EOUT t ZL PAD Vtrip VOL D 50 EOUT (R) VCC 50% EOUT t ZLS PAD Vtrip VOL Figure ...

Page 30

ProASIC3 nano DC and Switching Characteristics Overview of I/O Performance Summary of I/O DC Input and Output Levels – Default I/O Software Settings Table 2-14 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and ...

Page 31

Summary of I/O Timing Characteristics – Default I/O Software Settings Table 2-16 • Summary of AC Measuring Points Standard 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS ...

Page 32

... ProASIC3 nano DC and Switching Characteristics Table 2-18 • Summary of I/O Timing Characteristics—Software Default Settings (at 35 pF) STD Speed Grade, Commercial-Case Conditions: T For A3PN060, A3PN125, and A3PN250 I/O Standard 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS 100 µ Wide Range 2.5 V LVCMOS 1.8 V LVCMOS ...

Page 33

... These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend drive strength selection, temperature, and process. For board design CCI considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx (VOLspec) / IOLspec (PULL-DOWN-MAX (VCCImax – ...

Page 34

ProASIC3 nano DC and Switching Characteristics Table 2-23 • I/O Short Currents I 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS Note 100°C J The ...

Page 35

... The longer the rise/fall times, the more susceptible the input signal is to the board noise. Actel recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals. ...

Page 36

... Datapath Figure 2-6 • AC Loading Table 2-28 • 3.3 V LVTTL/LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 0 Notes: 1. Measuring point = Vtrip. See Table 2-16 on page 2-17 2. Capacitive Load for A3PN060, A3PN125, and A3PN250 VIH VOL VOH I Min. Max. ...

Page 37

... Note: For specific junction temperature and voltage supply levels, refer to Table 2-30 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: T Software Default Load for A3PN060, A3PN125, A3PN250 Drive Speed Strength Grade t t DOUT Std. ...

Page 38

ProASIC3 nano DC and Switching Characteristics Table 2-31 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T Software Default Load for A3PN020, A3PN015, A3PN010 Drive Speed Strength Grade t DOUT 2 mA Std. ...

Page 39

V LVCMOS Wide Range Table 2-33 • Minimum and Maximum DC Input and Output Levels for 3.3 V LVCMOS Wide Range 3.3 V LVCMOS Wide Range Equivalent Software Default Drive Strength Min. 3 Drive Strength Option V 100 µA ...

Page 40

... ProASIC3 nano DC and Switching Characteristics Timing Characteristics Table 2-34 • 3.3 V LVCMOS Wide Range Low Slew Commercial-Case Conditions: T Software Default Load for A3PN060, A3PN125, A3PN250 Equivalent Software Default Drive Drive Strength Speed 1 Strength Option Grade 100 µ Std. –1 –2 100 µ Std ...

Page 41

... Table 2-35 • 3.3 V LVCMOS Wide Range High Slew Commercial-Case Conditions: T Software Default Load for A3PN060, A3PN125, A3PN250 Equivalent Software Default Drive Drive Strength Speed 1 Strength Option Grade t DOUT 100 µ Std. 0.60 –1 0.51 –2 0.45 100 µ Std. 0.60 – ...

Page 42

ProASIC3 nano DC and Switching Characteristics Table 2-36 • 3.3 V LVCMOS Wide Range Low Slew Commercial-Case Conditions: T Software Default Load for A3PN020, A3PN015, A3PN010 Equivalent Software Default Drive Drive Strength Speed 1 Strength Option Grade ...

Page 43

Table 2-37 • 3.3 V LVCMOS Wide Range High Slew Commercial-Case Conditions: T Software Default Load for A3PN020, A3PN015, A3PN010 Equivalent Software Default Drive Drive Strength Speed 1 Strength Option Grade t DOUT 100 µ ...

Page 44

... Datapath Figure 2-7 • AC Loading Table 2-39 • 2.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 0 Notes: 1. Measuring point = Vtrip. See Table 2-16 on page 2-17 2. Capacitive Load for A3PN060, A3PN125, and A3PN250 VIH VOL VOH I Min. Max. ...

Page 45

... Note: For specific junction temperature and voltage supply levels, refer to Table 2-41 • 2.5 V LVCMOS High Slew Commercial-Case Conditions: T Software Default Load for A3PN060, A3PN125, A3PN250 Drive Speed Strength Grade t t DOUT Std. 0.60 8.38 – ...

Page 46

ProASIC3 nano DC and Switching Characteristics Table 2-42 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: T Software Default Load for A3PN020, A3PN015, A3PN010 Drive Speed Strength Grade t DOUT 2 mA Std. 0.60 –1 0.51 –2 ...

Page 47

... Figure 2-8 • AC Loading Table 2-45 • 1.8 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) Input HIGH (V) 0 Notes: 1. Measuring point = Vtrip. See Table 2-16 on page 2-17 2. Capacitive Load for A3PN060, A3PN125, and A3PN250 is 35 pF. VIH VOL VOH Min. Max. Max. Min. ...

Page 48

... Std. 0.60 –1 0.51 –2 0.45 Note: For specific junction temperature and voltage supply levels, refer to Table 2-47 • 1.8 V LVCMOS High Slew Commercial-Case Conditions: T Software Default Load for A3PN060, A3PN125, A3PN250 Drive Speed Strength Grade t DOUT 2 mA Std. 0.60 –1 0.51 – ...

Page 49

Table 2-48 • 1.8 V LVCMOS Low Slew Commercial-Case Conditions: T Software Default Load for A3PN020, A3PN015, A3PN010 Drive Speed Strength Grade t t DOUT Std. 0.60 8.52 –1 0.51 7.25 –2 0.45 6.36 ...

Page 50

... Figure 2-9 • AC Loading Table 2-51 • 1.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads Input LOW (V) 0 Notes: 1. Measuring point = Vtrip. See Table 2-16 on page 2-17 2. Capacitive Load for A3PN060, A3PN125, and A3PN250 VIH VOL VOH Min. Max. Max. ...

Page 51

... Note: For specific junction temperature and voltage supply levels, refer to Table 2-53 • 1.5 V LVCMOS High Slew Commercial-Case Conditions: T Software Default Load for A3PN060, A3PN125, A3PN250 Drive Speed Strength Grade t t DOUT Std. 0.60 7.86 – ...

Page 52

ProASIC3 nano DC and Switching Characteristics I/O Register Specifications Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset Preset Data C Enable B CLK A Data Input I/O Register with: Active High Enable Active High Preset Positive-Edge Triggered Figure ...

Page 53

Table 2-56 • Parameter Definition and Measuring Nodes Parameter Name t Clock-to-Q of the Output Data Register OCLKQ t Data Setup Time for the Output Data Register OSUD t Data Hold Time for the Output Data Register OHD t Enable ...

Page 54

ProASIC3 nano DC and Switching Characteristics Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear Data CC Enable BB CLK AA CLR DD Data Input I/O Register with Active High Enable Active High Clear Positive-Edge Triggered Figure 2-11 • ...

Page 55

Table 2-57 • Parameter Definition and Measuring Nodes Parameter Name t Clock-to-Q of the Output Data Register OCLKQ t Data Setup Time for the Output Data Register OSUD t Data Hold Time for the Output Data Register OHD t Enable ...

Page 56

ProASIC3 nano DC and Switching Characteristics Input Register 50% CLK 1 50% Data Enable 50% t IHE t ISUE Preset Clear Out_1 Figure 2-12 • Input Register Timing Diagram Timing Characteristics Table 2-58 • Input Data Register Propagation Delays Commercial-Case ...

Page 57

Output Register 50% 50% CLK t 50% 1 Data_out Enable 50% t OHE t Preset OSUE Clear DOUT Figure 2-13 • Output Register Timing Diagram Timing Characteristics Table 2-59 • Output Data Register Propagation Delays Commercial-Case Conditions: T Parameter t ...

Page 58

ProASIC3 nano DC and Switching Characteristics Output Enable Register 50% CLK 50% 1 D_Enable 50% Enable t t OESUE OEHE Preset Clear EOUT Figure 2-14 • Output Enable Register Timing Diagram Timing Characteristics Table 2-60 • Output Enable Register Propagation ...

Page 59

DDR Module Specifications Input DDR Module INBUF A Data B CLK CLKBUF C CLR INBUF Figure 2-15 • Input DDR Timing Model Table 2-61 • Parameter Definitions Parameter Name Parameter Definition t Clock-to-Out Out_QR DDRICLKQ1 t Clock-to-Out Out_QF DDRICLKQ2 t ...

Page 60

ProASIC3 nano DC and Switching Characteristics CLK Data 1 2 CLR t DDRIREMCLR t DDRICLR2Q1 Out_QF t DDRICLR2Q2 Out_QR Figure 2-16 • Input DDR Timing Diagram Timing Characteristics Table 2-62 • Input DDR Propagation Delays Commercial-Case Conditions: T Parameter t ...

Page 61

Output DDR Module A Data_F (from core) B CLK CLKBUF C D Data_R (from core) B CLR INBUF C Figure 2-17 • Output DDR Timing Model Table 2-63 • Parameter Definitions Parameter Name Parameter Definition t Clock-to-Out DDROCLKQ t Asynchronous ...

Page 62

ProASIC3 nano DC and Switching Characteristics CLK Data_F DDROREMCLR Data_R CLR DDROREMCLR t DDROCLR2Q Out Figure 2-18 • Output DDR Timing Diagram Timing Characteristics Table 2-64 • Output DDR Propagation Delays Commercial-Case Conditions: T ...

Page 63

VersaTile Characteristics VersaTile Specifications as a Combinatorial Module The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the and ProASIC3/E Macro ...

Page 64

ProASIC3 nano DC and Switching Characteristics OUT GND VCC OUT Figure 2-20 • Timing Model and Waveforms NAND2 or Any Combinatorial Logic MAX(t PD PD(RR) where edges are applicable ...

Page 65

Timing Characteristics Table 2-65 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T Combinatorial Cell Equation INV AND2 · B NAND2 Y = !(A · B) OR2 NOR2 Y = ...

Page 66

ProASIC3 nano DC and Switching Characteristics 50% CLK 50% Data EN 50 PRE SUE CLR Out Figure 2-22 • Timing Model and Waveforms Timing Characteristics Table 2-66 • Register Delays Commercial-Case Conditions: T Parameter t Clock-to-Q of ...

Page 67

Global Resource Characteristics A3PN250 Clock Tree Topology Clock delays are device-specific. global tree presented in Figure 2- used to drive all D-flip-flops in the device. CCC Figure 2-23 • Example of Global Tree Use in an A3PN250 Device ...

Page 68

ProASIC3 nano DC and Switching Characteristics Global Tree Timing Characteristics Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and ...

Page 69

Table 2-69 • A3PN020 Global Resource Commercial-Case Conditions: T Parameter Description t Input LOW Delay for Global Clock RCKL t Input HIGH Delay for Global Clock RCKH t Minimum Pulse Width HIGH for Global Clock RCKMPWH t Minimum Pulse Width ...

Page 70

... ProASIC3 nano DC and Switching Characteristics Table 2-71 • A3PN125 Global Resource Commercial-Case Conditions: T Parameter Description t Input LOW Delay for Global Clock RCKL t Input HIGH Delay for Global Clock RCKH t Minimum Pulse Width HIGH for Global Clock RCKMPWH t Minimum Pulse Width LOW for Global Clock ...

Page 71

Clock Conditioning Circuits CCC Electrical Specifications Timing Characteristics Table 2-73 • ProASIC3 nano CCC/PLL Specification Parameter Clock Conditioning Circuitry Input Frequency f Clock Conditioning Circuitry Output Frequency f Delay Increments in Programmable Delay Blocks Number of Programmable Values in Each ...

Page 72

ProASIC3 nano DC and Switching Characteristics Output Signal Note: Peak-to-peak jitter measurements are defined by T Figure 2-24 • Peak-to-Peak Jitter Definition period_max period_min = T – T peak-to-peak period_max period_min R e visio n 8 ...

Page 73

Embedded SRAM and FIFO Characteristics SRAM ADDRA11 ADDRA10 ADDRA0 DINA8 DINA7 DINA0 WIDTHA1 WIDTHA0 PIPEA WMODEA BLKA WENA CLKA ADDRB11 ADDRB10 ADDRB0 DINB8 DINB7 DINB0 WIDTHB1 WIDTHB0 PIPEB WMODEB BLKB WENB CLKB Figure 2-25 • RAM Models RAM4K9 RAM512X18 RADDR8 ...

Page 74

ProASIC3 nano DC and Switching Characteristics Timing Waveforms CLK ADD t BKS BLK_B t ENS WEN_B Figure 2-26 • RAM Read for Pass-Through Output CLK ADD t BKS BLK_B t ENS ...

Page 75

CYC t CKH CLK ADD 0 t BKS BLK_B t ENS WEN_B Figure 2-28 • RAM Write, Output Retained (WMODE = 0) t CKH CLK ...

Page 76

ProASIC3 nano DC and Switching Characteristics CLK RESET_B Figure 2-30 • RAM Reset CYC t t CKH CKL visio RSTBQ ...

Page 77

Timing Characteristics Table 2-74 • RAM4K9 Commercial-Case Conditions: T Parameter t Address Setup time AS t Address Hold time AH t REN_B, WEN_B Setup time ENS t REN_B, WEN_B Hold time ENH t BLK_B Setup time BKS t BLK_B Hold ...

Page 78

ProASIC3 nano DC and Switching Characteristics Table 2-75 • RAM512X18 Commercial-Case Conditions: T Parameter t Address setup time AS t Address hold time AH t REN_B, WEN_B setup time ENS t REN_B, WEN_B hold time ENH t Input data (DI) ...

Page 79

FIFO RW2 RW1 RW0 WW2 WW1 WW0 ESTOP FSTOP AEVAL11 AEVAL10 AEVAL0 AFVAL11 AFVAL10 AFVAL0 REN RBLK RCLK WD17 WD16 WD0 WEN WBLK WCLK RPIPE Figure 2-31 • FIFO Model ProASIC3 nano Flash FPGAs FIFO4K18 RD17 RD16 RD0 FULL AFULL ...

Page 80

ProASIC3 nano DC and Switching Characteristics Timing Waveforms RCLK/ WCLK RESET_B EMPTY AEMPTY FULL AFULL WA/RA (Address Counter) Figure 2-32 • FIFO Reset RCLK EMPTY AEMPTY WA/RA NO MATCH (Address Counter) Figure 2-33 • FIFO EMPTY Flag and AEMPTY Flag ...

Page 81

WCLK FULL AFULL WA/RA NO MATCH (Address Counter) Figure 2-34 • FIFO FULL Flag and AFULL Flag Assertion WCLK MATCH WA/RA NO MATCH (Address Counter) (EMPTY) 1st Rising Edge After 1st Write RCLK EMPTY AEMPTY Figure 2-35 • FIFO EMPTY ...

Page 82

ProASIC3 nano DC and Switching Characteristics Timing Characteristics Table 2-76 • FIFO Worst Commercial-Case Conditions: T Parameter t REN_B, WEN_B Setup Time ENS t REN_B, WEN_B Hold Time ENH t BLK_B Setup Time BKS t BLK_B Hold Time BKH t ...

Page 83

Embedded FlashROM Characteristics t SU CLK t HOLD Address A 0 Data Figure 2-37 • Timing Diagram Timing Characteristics Table 2-77 • Embedded FlashROM Access Time Commercial-Case Conditions: T Parameter Description t Address Setup Time SU t Address Hold Time ...

Page 84

... Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. ...

Page 85

... Package Pin Assignments 48-Pin QFN Notes: 1. This is the bottom view of the package. 2. The die attach paddle of the package is tied to ground (GND). Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx. ProASIC3 nano Flash FPGAs Pin ...

Page 86

Package Pin Assignments 48-Pin QFN A3PN010 Pin Number Function 1 GEC0/IO37RSB1 2 IO36RSB1 3 GEA0/IO34RSB1 4 IO22RSB1 5 GND 6 VCCIB1 7 IO24RSB1 8 IO33RSB1 9 IO26RSB1 10 IO32RSB1 11 IO27RSB1 12 IO29RSB1 13 IO30RSB1 14 IO31RSB1 15 IO28RSB1 16 ...

Page 87

QFN A3PN030Z Pin Number Function 1 IO82RSB1 2 GEC0/IO73RSB1 3 GEA0/IO72RSB1 4 GEB0/IO71RSB1 5 GND 6 VCCIB1 7 IO68RSB1 8 IO67RSB1 9 IO66RSB1 10 IO65RSB1 11 IO64RSB1 12 IO62RSB1 13 IO61RSB1 14 IO60RSB1 15 IO57RSB1 16 IO55RSB1 17 IO53RSB1 ...

Page 88

... Package Pin Assignments 68-Pin QFN Notes: 1. This is the bottom view of the package. 2. The die attach paddle of the package is tied to ground (GND). Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx Pin A1 Mark ...

Page 89

QFN Pin Number A3PN015 Function 1 IO60RSB2 2 IO54RSB2 3 IO52RSB2 4 IO50RSB2 5 IO49RSB2 6 GEC0/IO48RSB2 7 GEA0/IO47RSB2 8 VCC 9 GND 10 VCCIB2 11 IO46RSB2 12 IO45RSB2 13 IO44RSB2 14 IO43RSB2 15 IO42RSB2 16 IO41RSB2 17 IO40RSB2 ...

Page 90

Package Pin Assignments 68-Pin QFN A3PN020 Pin Number Function 1 IO60RSB2 2 IO54RSB2 3 IO52RSB2 4 IO50RSB2 5 IO49RSB2 6 GEC0/IO48RSB2 7 GEA0/IO47RSB2 8 VCC 9 GND 10 VCCIB2 11 IO46RSB2 12 IO45RSB2 13 IO44RSB2 14 IO43RSB2 15 IO42RSB2 16 ...

Page 91

QFN Pin Number A3PN030Z Function 1 IO82RSB1 2 IO80RSB1 3 IO78RSB1 4 IO76RSB1 5 GEC0/IO73RSB1 6 GEA0/IO72RSB1 7 GEB0/IO71RSB1 8 VCC 9 GND 10 VCCIB1 11 IO68RSB1 12 IO67RSB1 13 IO66RSB1 14 IO65RSB1 15 IO64RSB1 16 IO63RSB1 17 IO62RSB1 ...

Page 92

... Package Pin Assignments 100-Pin VQFP 100 1 Note: This is the top view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx ...

Page 93

VQFP A3PN030Z Pin Number Function 1 GND 2 IO82RSB1 3 IO81RSB1 4 IO80RSB1 5 IO79RSB1 6 IO78RSB1 7 IO77RSB1 8 IO76RSB1 9 GND 10 IO75RSB1 11 IO74RSB1 12 GEC0/IO73RSB1 13 GEA0/IO72RSB1 14 GEB0/IO71RSB1 15 IO70RSB1 16 IO69RSB1 17 VCC ...

Page 94

Package Pin Assignments 100-Pin VQFP A3PN060 Pin Number Function 1 GND 2 GAA2/IO51RSB1 3 IO52RSB1 4 GAB2/IO53RSB1 5 IO95RSB1 6 GAC2/IO94RSB1 7 IO93RSB1 8 IO92RSB1 9 GND 10 GFB1/IO87RSB1 11 GFB0/IO86RSB1 12 VCOMPLF 13 GFA0/IO85RSB1 14 VCCPLF 15 GFA1/IO84RSB1 16 ...

Page 95

VQFP Pin Number A3PN060Z 1 GND 2 GAA2/IO51RSB1 3 IO52RSB1 4 GAB2/IO53RSB1 5 IO95RSB1 6 GAC2/IO94RSB1 7 IO93RSB1 8 IO92RSB1 9 GND 10 GFB1/IO87RSB1 11 GFB0/IO86RSB1 12 VCOMPLF 13 GFA0/IO85RSB1 14 VCCPLF 15 GFA1/IO84RSB1 16 GFA2/IO83RSB1 17 VCC 18 ...

Page 96

... TRST 56 VJTAG 57 GDA1/IO65RSB0 58 GDC0/IO62RSB0 59 GDC1/IO61RSB0 60 GCC2/IO59RSB0 61 GCB2/IO58RSB0 62 GCA0/IO56RSB0 63 GCA1/IO55RSB0 64 GCC0/IO52RSB0 65 GCC1/IO51RSB0 66 VCCIB0 67 GND 68 VCC 69 IO47RSB0 70 GBC2/IO45RSB0 R e visio n 8 100-Pin VQFP A3PN125 Pin Number Function 71 GBB2/IO43RSB0 72 IO42RSB0 73 GBA2/IO41RSB0 74 VMV0 75 GNDQ 76 GBA1/IO40RSB0 77 GBA0/IO39RSB0 78 GBB1/IO38RSB0 79 GBB0/IO37RSB0 80 GBC1/IO36RSB0 81 GBC0/IO35RSB0 82 IO32RSB0 83 IO28RSB0 84 IO25RSB0 85 IO22RSB0 86 IO19RSB0 ...

Page 97

... TRST 56 VJTAG 57 GDA1/IO65RSB0 58 GDC0/IO62RSB0 59 GDC1/IO61RSB0 60 GCC2/IO59RSB0 61 GCB2/IO58RSB0 62 GCA0/IO56RSB0 63 GCA1/IO55RSB0 64 GCC0/IO52RSB0 65 GCC1/IO51RSB0 66 VCCIB0 67 GND 68 VCC 69 IO47RSB0 70 GBC2/IO45RSB0 ProASIC3 nano Flash FPGAs 100-Pin VQFP A3PN125Z Pin Number Function 71 GBB2/IO43RSB0 72 IO42RSB0 73 GBA2/IO41RSB0 74 VMV0 75 GNDQ 76 GBA1/IO40RSB0 77 GBA0/IO39RSB0 78 GBB1/IO38RSB0 79 GBB0/IO37RSB0 80 GBC1/IO36RSB0 81 GBC0/IO35RSB0 82 IO32RSB0 83 IO28RSB0 84 IO25RSB0 85 IO22RSB0 86 ...

Page 98

Package Pin Assignments 100-Pin VQFP Pin Number A3PN250 Function 1 GND 2 GAA2/IO67RSB3 3 IO66RSB3 4 GAB2/IO65RSB3 5 IO64RSB3 6 GAC2/IO63RSB3 7 IO62RSB3 8 IO61RSB3 9 GND 10 GFB1/IO60RSB3 11 GFB0/IO59RSB3 12 VCOMPLF 13 GFA0/IO57RSB3 14 VCCPLF 15 GFA1/IO58RSB3 16 ...

Page 99

VQFP Pin Number A3PN250Z Function 1 GND 2 GAA2/IO67RSB3 3 IO66RSB3 4 GAB2/IO65RSB3 5 IO64RSB3 6 GAC2/IO63RSB3 7 IO62RSB3 8 IO61RSB3 9 GND 10 GFB1/IO60RSB3 11 GFB0/IO59RSB3 12 VCOMPLF 13 GFA0/IO57RSB3 14 VCCPLF 15 GFA1/IO58RSB3 16 GFA2/IO56RSB3 17 VCC ...

Page 100

...

Page 101

Datasheet Information List of Changes The following table lists critical changes that were made in each revision of the ProASIC3 nano datasheet. Revision July 2010 The versioning system for datasheets has been changed. Datasheets are assigned a revision ...

Page 102

... A3PN030 is new. QFN", "68-Pin QFN", and "100-Pin VQFP" pin table for A3PN060Z is new. pin table for A3PN125Z is new pin table for A3PN250Z is new. was revised to add definitions of pin table for A3PN030 is new. was revised to change the maximum user is new. ...

Page 103

... Description" section number of gates and dual-port RAM for ProASIC3 nano devices. The device architecture figures, Overview with Two I/O Banks (A3PN060 and A3PN125) ProASIC3 nano Device Architecture Overview with Four I/O Banks were revised. Figure 1-1 • ProASIC3 Device Architecture Overview with Two I/O ...

Page 104

... Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. ...

Page 105

...

Page 106

... Fax +44 (0) 1276 607 540 © Actel Corporation. All rights reserved. Actel, Actel Fusion, IGLOO, Libero, Pigeon Point, ProASIC, SmartFusion and the associated logos are trademarks or registered trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective owners. Actel Japan ...

Related keywords