IRFP3306PBF International Rectifier, IRFP3306PBF Datasheet - Page 5

MOSFET N-CH 60V 120A TO-247AC

IRFP3306PBF

Manufacturer Part Number
IRFP3306PBF
Description
MOSFET N-CH 60V 120A TO-247AC
Manufacturer
International Rectifier
Series
HEXFET®r
Datasheet

Specifications of IRFP3306PBF

Fet Type
MOSFET N-Channel, Metal Oxide
Fet Feature
Standard
Rds On (max) @ Id, Vgs
4.2 mOhm @ 75A, 10V
Drain To Source Voltage (vdss)
60V
Current - Continuous Drain (id) @ 25° C
120A
Vgs(th) (max) @ Id
4V @ 150µA
Gate Charge (qg) @ Vgs
120nC @ 10V
Input Capacitance (ciss) @ Vds
4520pF @ 50V
Power - Max
220W
Mounting Type
Through Hole
Package / Case
TO-247-3 (Straight Leads), TO-247AC
Transistor Polarity
N Channel
Continuous Drain Current Id
120A
Drain Source Voltage Vds
60V
On Resistance Rds(on)
3.3mohm
Rds(on) Test Voltage Vgs
20V
Threshold Voltage Vgs Typ
4V
Rohs Compliant
Yes
Drain-source Breakdown Voltage
60 V
Gate-source Breakdown Voltage
20 V
Continuous Drain Current
160 A
Power Dissipation
220 W
Mounting Style
Through Hole
Gate Charge Qg
85 nC
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
IRFP3306PBF
Manufacturer:
TOSHIBA
Quantity:
4 000
Part Number:
IRFP3306PBF
Manufacturer:
IR
Quantity:
20 000
Company:
Part Number:
IRFP3306PBF
Quantity:
9 000
Company:
Part Number:
IRFP3306PBF
Quantity:
2 000
www.irf.com
Fig 15. Maximum Avalanche Energy vs. Temperature
200
160
120
80
40
0
25
0.0001
0.001
100
0.01
10
Starting T J , Junction Temperature (°C)
0.1
1
1.0E-06
1
1E-006
50
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
D = 0.50
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
Duty Cycle = Single Pulse
TOP
BOTTOM 1% Duty Cycle
I D = 96A
75
0.20
0.02
0.01
0.10
0.05
SINGLE PULSE
( THERMAL RESPONSE )
100
Single Pulse
1.0E-05
0.01
1E-005
0.05
0.10
Fig 14. Typical Avalanche Current vs.Pulsewidth
125
150
175
t 1 , Rectangular Pulse Duration (sec)
1.0E-04
0.0001
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
2. Safe operation in Avalanche is allowed as long asT
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
6. I
7. ΔT
tav (sec)
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
during avalanche).
25°C in Figure 14, 15).
t
D = Duty cycle in avalanche = t
Z
av
av =
thJC
D (ave)
= Allowable avalanche current.
=
Average time in avalanche.
(D, t
Allowable rise in junction temperature, not to exceed T
= Average power dissipation per single avalanche pulse.
av
) = Transient thermal resistance, see Figures 13)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
jmax
1.0E-03
0.001
. This is validated for every part type.
τ
J
τ
J
τ
1
Ci= τi/Ri
P
τ
1
D (ave)
R
1
R
1
= 1/2 ( 1.3·BV·I
I
E
av
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
AS (AR)
τ
= 2DT/ [1.3·BV·Z
2
R
τ
2
av
2
R
2
·f
1.0E-02
= P
τ
C
0.01
D (ave)
Ri (°C/W)
0.249761
0.400239 0.005548
av
) = DT/ Z
·t
th
av
]
τι (sec)
0.00028
jmax
thJC
jmax
is not exceeded.
1.0E-01
(assumed as
0.1
5

Related parts for IRFP3306PBF