LFE2M20E-6FN484C LATTICE SEMICONDUCTOR, LFE2M20E-6FN484C Datasheet - Page 24

no-image

LFE2M20E-6FN484C

Manufacturer Part Number
LFE2M20E-6FN484C
Description
FPGA LatticeECP2M Family 19000 Cells 90nm (CMOS) Technology 1.2V 484-Pin FBGA
Manufacturer
LATTICE SEMICONDUCTOR
Datasheet

Specifications of LFE2M20E-6FN484C

Package
484FBGA
Family Name
LatticeECP2M
Device Logic Units
19000
Typical Operating Supply Voltage
1.2 V
Maximum Number Of User I/os
304
Ram Bits
1246208

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LFE2M20E-6FN484C
Manufacturer:
Lattice
Quantity:
135
Part Number:
LFE2M20E-6FN484C
Manufacturer:
LATTICE
Quantity:
350
Part Number:
LFE2M20E-6FN484C
Manufacturer:
Lattice Semiconductor Corporation
Quantity:
10 000
Part Number:
LFE2M20E-6FN484C
Manufacturer:
ALTERA
0
Part Number:
LFE2M20E-6FN484C-5I
Manufacturer:
LATTICE
Quantity:
11
Part Number:
LFE2M20E-6FN484C-5I
Manufacturer:
ALTERA
0
Part Number:
LFE2M20E-6FN484C-5I
Manufacturer:
LATTICE
Quantity:
20 000
Lattice Semiconductor
If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during
device Wake Up must occur before the release of the device I/Os becomes active.
These instructions apply to all EBR RAM and ROM implementations.
Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.
sysDSP™ Block
The LatticeECP2/M family provides a sysDSP block, making it ideally suited for low cost, high performance Digital
Signal Processing (DSP) applications. Typical functions used in these applications are Finite Impulse Response
(FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convolution encoders and
decoders. These complex signal processing functions use similar building blocks such as multiply-adders and mul-
tiply-accumulators.
sysDSP Block Approach Compared to General DSP
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by
higher clock speeds. The LatticeECP2/M, on the other hand, has many DSP blocks that support different data-
widths. This allows the designer to use highly parallel implementations of DSP functions. The designer can opti-
mize the DSP performance vs. area by choosing an appropriate level of parallelism. Figure 2-22 compares the fully
serial and the mixed parallel and serial implementations.
Figure 2-22. Comparison of General DSP and LatticeECP2/M Approaches
sysDSP Block Capabilities
The sysDSP block in the LatticeECP2/M family supports four functional elements in three 9, 18 and 36 data path
widths. The user selects a function element for a DSP block and then selects the width and type (signed/unsigned)
of its operands. The operands in the LatticeECP2/M family sysDSP Blocks can be either signed or unsigned but not
mixed within a function element. Similarly, the operand widths cannot be mixed within a block. In the LatticeECP2/
M family the DSP elements can be concatenated.
The resources in each sysDSP block can be configured to support the following elements:
Accumulator
Multiplier
Single
Operand
Function implemented in
General purpose DSP
A
x
Operand
B
M loops
Operand
A
x
Operand
Multiplier 0
B
2-21
Multiplier 1
Operand
A
accumulate
Function implemented
x
(k adds)
m/k
in LatticeECP2/M
Operand
B
+ +
LatticeECP2/M Family Data Sheet
Output
Operand
A
x
Operand
Multiplier k
B
loops
m/k
Architecture

Related parts for LFE2M20E-6FN484C