K4T1G164QE-HCE6000 Samsung Semiconductor, K4T1G164QE-HCE6000 Datasheet - Page 45

no-image

K4T1G164QE-HCE6000

Manufacturer Part Number
K4T1G164QE-HCE6000
Description
Manufacturer
Samsung Semiconductor
Type
DDR2 SDRAMr
Datasheet

Specifications of K4T1G164QE-HCE6000

Organization
64Mx16
Density
1Gb
Address Bus
16b
Access Time (max)
450ps
Maximum Clock Rate
667MHz
Operating Supply Voltage (typ)
1.8V
Package Type
FBGA
Operating Temp Range
0C to 95C
Operating Supply Voltage (max)
1.9V
Operating Supply Voltage (min)
1.7V
Supply Current
115mA
Pin Count
84
Mounting
Surface Mount
Operating Temperature Classification
Commercial
Lead Free Status / RoHS Status
Compliant
44. For tAOFD of DDR2-400/533, the 1/2 clock of tCK in the 2.5 x tCK assumes a tCH, input clock HIGH pulse width of 0.5 relative to tCK. tAOF,min and
45. For tAOFD of DDR2-667/800, the 1/2 clock of nCK in the 2.5 x nCK assumes a tCH(avg), average input clock HIGH pulse width of 0.5 relative to
K4T1G084QE
K4T1G164QE
K4T1G044QE
For example, if an input clock has a worst case tCH of 0.45, the tAOFmin should be derated by subtracting 0.05 x tCK from it, whereas if an input clock
For example, if an input clock has a worst case tCH(avg) of 0.48, the tAOFmin should be derated by subtracting 0.02 x tCK(avg) from it, whereas if an
Note that these deratings are in addition to the tAOF derating per input clock jitter, i.e. tJIT(duty) and tERR(6-10per). However tAC values used in the
tAOF,max should each be derated by the same amount as the actual amount of tCH offset present at the DRAM input with respect to 0.5.
has a worst case tCH of 0.55, the tAOFmax should be derated by adding 0.05 x tCK to it. Therefore, we have;
tCK(avg). tAOFmin and tAOFmax should each be derated by the same amount as the actual amount of tCH(avg) offset present at the DRAM input
with respect to 0.5.
input clock has a worst case tCH(avg) of 0.52, the tAOFmax should be derated by adding 0.02 x tCK(avg) to it. Therefore, we have;
equations shown above are from the timing parameter table and are not derated. Thus the final derated values for tAOF are;
tAOFmin(derated) = tAC,min - [0.5 - Min(0.5, tCHmin)] x tCK
tAOFmax(derated) = tAC,max + 0.6 + [Max(0.5, tCHmax) - 0.5] x tCK
or
tAOFmin(derated) = Min(tACmin, tACmin - [0.5 - tCHmin] x tCK)
tAOFmax(derated) = 0.6 + Max(tACmax, tACmax + [tCHmax - 0.5] x tCK)
where tCHmin and tCHmax are the minimum and maximum of tCH actually measured at the DRAM input balls.
tAOFmin(derated) = tACmin - [0.5 - Min(0.5, tCH(avg)min)] x tCK(avg)
tAOFmax(derated) = tACmax + 0.6 + [Max(0.5, tCH(avg)max) - 0.5] x tCK(avg)
tAOFmin(derated) = Min(tACmin, tACmin - [0.5 - tCH(avg)min] x tCK(avg))
tAOFmax(derated) = 0.6 + Max(tACmax, tACmax + [tCH(avg)max - 0.5] x tCK(avg))
where tCH(avg),min and tCH(avg),max are the minimum and maximum of tCH(avg) actually measured at the DRAM input balls.
tAOFmin(derated_final) = tAOFmin(derated) + { - tJIT(duty)max - tERR(6-10per)max }
tAOFmax(derated_final) = tAOFmax(derated) + { - tJIT(duty)min - tERR(6-10per)min }
45 of 45
Rev. 1.1 December 2008
DDR2 SDRAM

Related parts for K4T1G164QE-HCE6000