AD5332BRUZ Analog Devices Inc, AD5332BRUZ Datasheet - Page 9

IC DAC 8BIT DUAL VOUT 20TSSOP

AD5332BRUZ

Manufacturer Part Number
AD5332BRUZ
Description
IC DAC 8BIT DUAL VOUT 20TSSOP
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD5332BRUZ

Data Interface
Parallel
Settling Time
6µs
Number Of Bits
8
Number Of Converters
2
Voltage Supply Source
Single Supply
Power Dissipation (max)
1.8mW
Operating Temperature
-40°C ~ 105°C
Mounting Type
Surface Mount
Package / Case
20-TSSOP
Resolution (bits)
8bit
Sampling Rate
167kSPS
Input Channel Type
Parallel
Supply Voltage Range - Analog
2.5V To 5.5V
Supply Current
300µA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD5332BRUZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
REV. 0
TERMINOLOGY
RELATIVE ACCURACY
For the DAC, Relative Accuracy or Integral Nonlinearity (INL)
is a measure of the maximum deviation, in LSBs, from a straight
line passing through the actual endpoints of the DAC transfer
function. Typical INL versus Code plot can be seen in Figures
5, 6, and 7.
DIFFERENTIAL NONLINEARITY
Differential Nonlinearity (DNL) is the difference between the
measured change and the ideal 1 LSB change between any two
adjacent codes. A specified differential nonlinearity of ± 1 LSB
maximum ensures monotonicity. This DAC is guaranteed mono-
tonic by design. Typical DNL versus Code plot can be seen in
Figures 8, 9, and 10.
OFFSET ERROR
This is a measure of the offset error of the DAC and the output
amplifier. It is expressed as a percentage of the full-scale range.
If the offset voltage is positive, the output voltage will still be
positive at zero input code. This is shown in Figure 3. Because
the DACs operate from a single supply, a negative offset cannot
appear at the output of the buffer amplifier. Instead, there will
be a code close to zero at which the amplifier output saturates
(amplifier footroom). Below this code there will be a deadband
over which the output voltage will not change. This is illustrated
in Figure 4.
GAIN ERROR
This is a measure of the span error of the DAC (including any
error in the gain of the buffer amplifier). It is the deviation in
slope of the actual DAC transfer characteristic from the ideal
expressed as a percentage of the full-scale range. This is illus-
trated in Figure 2.
VOLTAGE
OUTPUT
Figure 2. Gain Error
DAC CODE
ACTUAL
IDEAL
POSITIVE
GAIN ERROR
NEGATIVE
GAIN ERROR
–9–
FOOTROOM
NEGATIVE
AMPLIFIER
POSITIVE
NEGATIVE
OFFSET
OFFSET
Figure 4. Negative Offset Error and Gain Error
VOLTAGE
AD5332/AD5333/AD5342/AD5343
Figure 3. Positive Offset Error and Gain Error
VOLTAGE
(~ 1mV)
OFFSET
OUTPUT
OUTPUT
DEADBAND CODES
ACTUAL
IDEAL
DAC CODE
DAC CODE
IDEAL
ACTUAL
GAIN ERROR
AND
OFFSET
ERROR
GAIN ERROR
AND
OFFSET
ERROR

Related parts for AD5332BRUZ