MT41J256M8HX-15E IT:D Micron Technology Inc, MT41J256M8HX-15E IT:D Datasheet

no-image

MT41J256M8HX-15E IT:D

Manufacturer Part Number
MT41J256M8HX-15E IT:D
Description
MICMT41J256M8HX-15E_IT:D 2GB DDR3 SDRAM
Manufacturer
Micron Technology Inc
Type
DDR3 SDRAMr
Datasheet

Specifications of MT41J256M8HX-15E IT:D

Organization
256Mx8
Address Bus
18b
Maximum Clock Rate
1.333GHz
Operating Supply Voltage (typ)
1.5V
Package Type
FBGA
Operating Temp Range
-40C to 95C
Operating Supply Voltage (max)
1.575V
Operating Supply Voltage (min)
1.425V
Supply Current
165mA
Pin Count
78
Mounting
Surface Mount
Operating Temperature Classification
Industrial
Lead Free Status / Rohs Status
Compliant
DDR3 SDRAM
MT41J512M4 – 64 Meg x 4 x 8 Banks
MT41J256M8 – 32 Meg x 8 x 8 Banks
MT41J128M16 – 16 Meg x 16 x 8 Banks
Features
Table 1: Key Timing Parameters
PDF: 09005aef826aaadc
2Gb_DDR3_SDRAM.pdf – Rev. K 04/10 EN
• V
• 1.5V center-terminated push/pull I/O
• Differential bidirectional data strobe
• 8n-bit prefetch architecture
• Differential clock inputs (CK, CK#)
• 8 internal banks
• Nominal and dynamic on-die termination (ODT)
• CAS READ latency (CL): 5, 6, 7, 8, 9, 10, or 11
• POSTED CAS ADDITIVE latency (AL): 0, CL - 1,
• CAS WRITE latency (CWL): 5, 6, 7, 8, based on
• Fixed burst length (BL) of 8 and burst chop (BC) of 4
• Selectable BC4 or BL8 on-the-fly (OTF)
• Self refresh mode
• T
• Clock frequency range of 300–800 MHz
• Self refresh temperature (SRT)
• Write leveling
• Multipurpose register
• Output driver calibration
Notes:
for data, strobe, and mask signals
CL - 2
(via the mode register set [MRS])
– 64ms, 8192 cycle refresh at 0°C to +85°C
– 32ms, 8192 cycle refresh at +85°C to +95°C
DD
C
Speed Grade
of 0°C to +95°C
= V
-107
-125
-187E
-15E
-187
-15
DDQ
1. Backward compatible to 1066, CL = 7 (-187E).
2. Backward compatible to 1333, CL = 9 (-15E).
3. Backward compatible to 1066, CL = 8 (-187).
1, 2
1, 2
3
1
= +1.5V ±0.075V
Products and specifications discussed herein are subject to change by Micron without notice.
Data Rate (MT/s)
1866
1600
1333
1333
1066
1066
Target
t
CK
13-13-13
11-11-11
10-10-10
t
9-9-9
8-8-8
7-7-7
RCD-
1
t
Options
• Configuration
• FBGA package (Pb-free) – x4, x8
• FBGA package (Pb-free) – x16
• Timing – cycle time
• Operating temperature
• Revision
RP-CL
– 512 Meg x 4
– 256 Meg x 8
– 128 Meg x 16
– 78-ball (8mm x 10.5mm) Rev. H
– 78-ball (9mm x 11.5mm) Rev. D
– 82-ball (12.5mm x 15mm) Rev. A
– 96-ball (9mm x 14mm) Rev. D
– 1.07ns @ CL = 13 (DDR3-1866)
– 1.25ns @ CL = 11 (DDR3-1600)
– 1.5ns @ CL = 10 (DDR3-1333)
– 1.5ns @ CL = 9 (DDR3-1333)
– 1.87ns @ CL = 8 (DDR3-1066)
– 1.87ns @ CL = 7 (DDR3-1066)
– Commercial (0°C ≤ T
– Industrial (–40°C ≤ T
Note:
Micron Technology, Inc. reserves the right to change products or specifications without notice.
1. Not all options listed can be combined to
1
t
RCD (ns)
define an offered product. Use the part
catalog search on
for available offerings.
2Gb: x4, x8, x16 DDR3 SDRAM
13.91
13.75
13.5
13.1
15
15
C
C
≤ +95°C)
≤ +95°C)
t
RP (ns)
© 2006 Micron Technology, Inc. All rights reserved.
13.91
13.75
13.5
13.1
http://www.micron.com
15
15
Features
CL (ns)
13.91
13.75
13.5
13.1
Marking
15
15
:A/:D/:H
128M16
512M4
256M8
-187E
None
-107
-125
-15E
-187
DA
HX
HA
-15
JE
IT

Related parts for MT41J256M8HX-15E IT:D

MT41J256M8HX-15E IT:D Summary of contents

Page 1

DDR3 SDRAM MT41J512M4 – 64 Meg Banks MT41J256M8 – 32 Meg Banks MT41J128M16 – 16 Meg Banks Features • +1.5V ±0.075V DD DDQ • ...

Page 2

Table 2: Addressing Parameter Configuration 64 Meg banks Refresh count Row addressing Bank addressing Column addressing Figure 1: DDR3 Part Numbers Example Part Number: MT41J256M8JE-15:D MT41J Configuration Configuration 512 Meg x 4 512M4 256 Meg x ...

Page 3

Contents State Diagram ................................................................................................................................................ 11 Functional Description ................................................................................................................................... 12 Industrial Temperature .............................................................................................................................. 12 General Notes ............................................................................................................................................ 12 Functional Block Diagrams ............................................................................................................................. 14 Ball Assignments and Descriptions ................................................................................................................. 16 Package Dimensions ...................................................................................................................................... 25 Electrical Specifications .................................................................................................................................. 29 Absolute Ratings ........................................................................................................................................ 29 ...

Page 4

Input Clock Frequency Change ...................................................................................................................... 123 Write Leveling ............................................................................................................................................... 125 Write Leveling Procedure ........................................................................................................................... 127 Write Leveling Mode Exit Procedure ........................................................................................................... 129 Initialization ................................................................................................................................................. 130 Mode Registers .............................................................................................................................................. 132 Mode Register 0 (MR0) .................................................................................................................................. 133 Burst Length ............................................................................................................................................. 133 Burst ...

Page 5

Asynchronous ODT Mode .............................................................................................................................. 201 Synchronous to Asynchronous ODT Mode Transition (Power-Down Entry) ................................................. 203 Asynchronous to Synchronous ODT Mode Transition (Power-Down Exit) ....................................................... 205 Asynchronous to Synchronous ODT Mode Transition (Short CKE Pulse) ..................................................... 207 PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – ...

Page 6

List of Tables Table 1: Key Timing Parameters ...................................................................................................................... 1 Table 2: Addressing ......................................................................................................................................... 2 Table 3: 78-Ball FBGA – x4, x8 Ball Descriptions .............................................................................................. 19 Table 4: 82-Ball FBGA (x4, x8) ........................................................................................................................ 21 Table 5: 96-Ball FBGA – x16 ...

Page 7

Table 51: Differential Output Slew Rate Definition ......................................................................................... 73 Table 52: DDR3-1066 Speed Bins ................................................................................................................... 74 Table 53: DDR3-1333 Speed Bins ................................................................................................................... 75 Table 54: DDR3-1600 Speed Bins ................................................................................................................... 76 Table 55: DDR3-1866 Speed Bins ................................................................................................................... 77 Table 56: Electrical ...

Page 8

List of Figures Figure 1: DDR3 Part Numbers ......................................................................................................................... 2 Figure 2: Simplified State Diagram ................................................................................................................. 11 Figure 3: 512 Meg x 4 Functional Block Diagram ............................................................................................. 14 Figure 4: 256 Meg x 8 Functional Block Diagram ............................................................................................. 15 Figure ...

Page 9

Figure 51: MRS to nonMRS Command Timing ( Figure 52: Mode Register 0 (MR0) Definitions ................................................................................................ 134 Figure 53: READ Latency .............................................................................................................................. 136 Figure 54: Mode Register 1 (MR1) Definition ................................................................................................. 137 Figure 55: READ Latency ( ...

Page 10

Figure 103: ACTIVATE to Power-Down Entry ................................................................................................ 185 Figure 104: PRECHARGE to Power-Down Entry ............................................................................................. 185 Figure 105: MRS Command to Power-Down Entry ........................................................................................ 186 Figure 106: Power-Down Exit to Refresh to Power-Down Entry ...................................................................... 186 Figure 107: RESET Sequence ...

Page 11

State Diagram Figure 2: Simplified State Diagram Power applied Reset Power procedure on From any RESET state ACT = ACTIVATE MPR = Multipurpose register MRS = Mode register set PDE = Power-down entry PDX = Power-down exit PRE = PRECHARGE ...

Page 12

Functional Description DDR3 SDRAM uses a double data rate architecture to achieve high-speed operation. The double data rate architecture is an 8n-prefetch architecture with an interface de- signed to transfer two data words per clock cycle at the I/O pins. ...

Page 13

Complete functionality may be described throughout the document; any page or dia- gram may have been simplified to convey a topic and may not be inclusive of all requirements. • Any specific requirement takes precedence over a general statement. ...

Page 14

Functional Block Diagrams DDR3 SDRAM is a high-speed, CMOS dynamic random access memory internally configured as an 8-bank DRAM. Figure 3: 512 Meg x 4 Functional Block Diagram ODT ZQ RESET# RZQ ZQCL, ZQCS CKE Control V A12 ...

Page 15

Figure 4: 256 Meg x 8 Functional Block Diagram ODT ZQ RESET# RZQ Control ZQCL, ZQCS CKE logic V SSQ A12 CK, CK# BC4 (burst chop) CS# RAS# OTF CAS# WE# Refresh 15 counter Mode registers Row- address 18 MUX ...

Page 16

Ball Assignments and Descriptions Figure 6: 78-Ball FBGA – x4, x8 (Top View Ball descriptions listed in Table 3 (page 19) are listed as “x4, x8” ...

Page 17

Figure 7: 82-Ball FBGA – x4, x8 (Top View Notes: 1. Ball descriptions listed in Table 4 (page 21) are listed as “x4, x8” if unique; otherwise, ...

Page 18

Figure 8: 96-Ball FBGA – x16 (Top View Ball descriptions listed in Table 5 (page 23) are listed as “x4, x8” if unique; ...

Page 19

Table 3: 78-Ball FBGA – x4, x8 Ball Descriptions Symbol Type A0, A1, A2, A3, A4, Input A5, A6, A7, A8, A9, A10/AP, A11, A12/ BC#, A13, A14 BA[2:0] Input CK, CK# Input CKE Input CS# Input DM Input ODT ...

Page 20

Table 3: 78-Ball FBGA – x4, x8 Ball Descriptions (Continued) Symbol Type DQ[3:0] I/O DQ[7:0] I/O DQS, DQS# I/O TDQS, TDQS# Output V Supply DD V Supply DDQ V Supply REFCA V Supply REFDQ V Supply SS V Supply SSQ ...

Page 21

Table 4: 82-Ball FBGA (x4, x8) Symbol Type A0, A1, A2, A3 A4, Input A5, A6, A7, A8, A9, A10/AP, A11, A12/ BC#, A13, A14 BA[2:0] Input CK, CK# Input CKE Input CS# Input DM Input ODT Input RAS#, CAS#, ...

Page 22

Table 4: 82-Ball FBGA (x4, x8) (Continued) Symbol Type DQ[3:0] I/O DQ[7:0] I/O DQS, DQS# I/O TDQS, TDQS# Output V Supply DD V Supply DDQ V Supply REFCA V Supply REFDQ V Supply SS V Supply SSQ ZQ Reference – ...

Page 23

Table 5: 96-Ball FBGA – x16 Ball Descriptions Symbol Type A0, A1, A2, A3, A4, Input A5, A6, A7, A8, A9, A10/AP, A11, A12/ BC#, A13 BA[2:0] Input CK, CK# Input CKE Input CS# Input LDM Input ODT Input RAS#, ...

Page 24

Table 5: 96-Ball FBGA – x16 Ball Descriptions (Continued) Symbol Type UDM Input DQ[7:0] I/O DQ[15:8] I/O LDQS, LDQS# I/O UDQS, UDQS# I/O V Supply DD V Supply DDQ V Supply REFCA V Supply REFDQ V Supply SS V Supply ...

Page 25

Package Dimensions Figure 9: 78-Ball FBGA – x4, x8; "DA" Seating Plane A 0.12 A 78X Ø0.45 Solder ball material: SAC305 (96.5% Sn, 3% Ag, 0.5% Cu). Dimensions apply to solder balls post-reflow Ø0.35 SMD ball ...

Page 26

Figure 10: 78-Ball FBGA – x4, x8; "HX" 0.155 78X Ø0.45 Dimensions apply to solder balls post-reflow on Ø0.35 SMD ball pads. 9 11.5 ±0.1 9.6 CTR 0.8 TYP 1. All dimensions are in millimeters. Note: PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – ...

Page 27

Figure 11: 82-Ball FBGA – x4, x8; "JE" Seating plane A 0.12 A 82X Ø0.45 Solder ball material: SAC305. Dimensions apply solder balls post-reflow on Ø0.33 NSMD ball pads. 0.8 TYP 9.6 CTR 0.8 TYP ...

Page 28

Figure 12: 96-Ball FBGA – x16; "HA" Seating plane A 0.12 A 96X Ø0.45 Solder ball material: SAC305. Dimensions apply to solder balls post-reflow Ø0.35 SMD ball pads. 12 CTR 0.8 TYP 0.8 TYP 6.4 CTR ...

Page 29

Electrical Specifications Absolute Ratings Stresses greater than those listed in Table 6 may cause permanent damage to the de- vice. This is a stress rating only, and functional operation of the device at these or any other conditions outside those ...

Page 30

Input/Output Capacitance Table 7: Input/Output Capacitance Note 1 applies to the entire table Capacitance Parameters Symbol CK and CK Δ CK# C DCK Single-end I/O: DQ Differential I/O: DQS, C DQS#, TDQS, TDQS# ΔC: ...

Page 31

Thermal Characteristics Table 8: Thermal Characteristics Parameter/Condition Operating case temperature Junction-to-case (TOP) Notes: 1. MAX operating case temperature thermal solution must be designed to ensure the DRAM device does not exceed the 3. Device functionality is not ...

Page 32

Electrical Specifications – I Within the following I are used, unless stated otherwise: • LOW: V • Midlevel: Inputs are V • • R TT,nom • R TT(WR) • Qoff is enabled in MR1 • ODT is enabled ...

Page 33

Table 10: I Measurement Loop DD0 nRAS 0 nRC nRC + 1 nRC + 2 nRC + 3 nRC + 4 nRC + nRAS 1 2 × nRC 2 4 × nRC 3 6 × ...

Page 34

Table 11: I Measurement Loop DD1 nRCD nRAS 0 nRC nRC + 1 nRC + 2 nRC + 3 nRC + 4 nRC + nRCD nRC + nRAS 1 2 × nRC 2 4 × ...

Page 35

Table 12: I Measurement Conditions for Power-Down Currents DD I DD2P0 Power-Down Name Current (Slow Exit) Timing pattern CKE External clock RAS t RCD t RRD CS# Command inputs Row/column ...

Page 36

Table 13: I and I Measurement Loop DD2N DD3N 4–7 2 8–11 3 12–15 4 16–19 5 20–23 6 24–27 7 28–31 1. DQ, DQS, DQS# are midlevel. Notes LOW. 3. ...

Page 37

Table 15: I Measurement Loop DD4R 8–15 2 16–23 3 24–31 4 32–39 5 40–47 6 48–55 7 56–63 1. DQ, DQS, DQS# are midlevel when not driving in burst ...

Page 38

Table 16: I Measurement Loop DD4W 8–15 2 16–23 3 24–31 4 32–39 5 40–47 6 48–55 7 56–63 1. DQ, DQS, DQS# are midlevel when not driving in burst ...

Page 39

Table 17: I Measurement Loop DD5B 5–8 1c 9–12 1d 13–16 1e 17–20 1f 21–24 1g 25–28 1h 29–32 2 33–nRFC - 1 1. DQ, DQS, DQS# are midlevel. Notes ...

Page 40

Table 18: I Measurement Conditions for DD6 Normal Temperature Range I Test DD CKE External clock Off, CK and CK# = LOW RAS t RCD t RRD CS# ...

Page 41

Table 19: I Measurement Loop DD7 nRRD nRRD + 1 1 nRRD + 2 nRRD + × nRRD 3 3 × nRRD 4 × nRRD 4 4 × nRRD + 1 5 ...

Page 42

Table 19: I Measurement Loop (Continued) DD7 16 3 × nFAW + nRRD 17 3 × nFAW + 2 × nRRD 18 3 × nFAW + 3 × nRRD 3 × nFAW + 4 × nRRD 19 3 × nFAW ...

Page 43

Electrical Characteristics – values are for full operating range of voltage and temperature unless otherwise noted. DD Table 20: I Maximum Limits – Die Rev A DD Speed Bin I Width DDR3-800 DD0 x8 ...

Page 44

PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – Rev. K 04/10 EN Electrical Characteristics – I 5a. When TC < 0°C: I and I DD2P DD3P rated by 2%; and I and I must be derated by 7%. DD6 DD7 5b. When TC > ...

Page 45

Table 21: I Maximum Limits – Die Rev D DD Speed Bin I Width DDR3-1066 DD0 x8 75 x16 DD1 x8 95 x16 125 I All 12 DD2P0(SLOW ...

Page 46

PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – Rev. K 04/10 EN Electrical Characteristics – I 5b. When TC > +85° DD0 DD1 DD2N must be derated by 2%; I must be derated by 30%; and I DD2Px 46 ...

Page 47

Table 22: I Maximum Limits – Die Rev H DD Speed Bin I Width DDR3-1066 tbd DD0 x8 tbd I x4 tbd DD1 x8 tbd I All tbd DD2P0(SLOW) I All tbd DD2P1(FAST) I All tbd DD2Q ...

Page 48

Electrical Specifications – DC and AC DC Operating Conditions Table 23: DC Electrical Characteristics and Operating Conditions All voltages are referenced Parameter/Condition Supply voltage I/O supply voltage Input leakage current Any input 0V ≤ V ≤ V ...

Page 49

Table 25: Input Switching Conditions Parameter/Condition Input high AC voltage: Logic 1 @ 175mV Input high AC voltage: Logic 1 @ 150mV Input high AC voltage: Logic 1 @ 135 mV Input high AC voltage: Logic ...

Page 50

Figure 14: Input Signal Minimum V and V levels IH(AC) 0.925V V IH(DC) 0.850V 0.780V 0.765V 0.750V 0.735V 0.720V 0.650V V IL(DC) 0.575V V IL(AC) Note: 1. Numbers in diagrams reflect nominal values. PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – ...

Page 51

AC Overshoot/Undershoot Specification Table 26: Control and Address Pins Parameter Maximum peak amplitude allowed for overshoot area (see Figure 15) Maximum peak amplitude allowed for undershoot area (see Figure 16) Maximum overshoot area above V Maximum undershoot area below V ...

Page 52

Table 28: Differential Input Operating Conditions (CK, CK# and DQS, DQS#) Parameter/Condition Differential input voltage logic high - slew Differential input voltage logic low - slew Differential input voltage logic high Differential input voltage logic low Differential input crossing voltage ...

Page 53

Figure 18: Single-Ended Requirements for Differential Signals Figure 19: Definition of Differential AC-Swing and V IH,diff(AC)min V IH,diff,min V IH,diff(DC)min V IL,diff(DC)max V IL,diff,max V IL,diff(AC)max Table 29: Allowed Time Before Ringback ...

Page 54

Table 29: Allowed Time Before Ringback ( DQS# (Continued) Note: 1. Below V Slew Rate Definitions for Single-Ended Input Signals Setup ( tween the last crossing of V nominal slew rate for a falling signal is defined as the slew ...

Page 55

Figure 20: Nominal Slew Rate Definition for Single-Ended Input Signals Setup Hold PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – Rev. K 04/10 EN Electrical Specifications – DC and AC ΔTFS ΔTFH 55 Micron Technology, Inc. reserves the right to change products or specifications ...

Page 56

Slew Rate Definitions for Differential Input Signals Input slew rate for differential signals (CK, CK# and DQS, DQS#) are defined and meas- ured, as shown in Table 31 and Figure 21. The nominal slew rate for a rising signal is ...

Page 57

ODT Characteristics ODT effective resistance R DM, DQS, DQS#, and TDQS, TDQS# balls (x8 devices only). The ODT target values and a functional representation are listed in Table 32 and Table 33 (page 58). The individu- al pull-up and pull-down ...

Page 58

R TT • • Table 33: R Effective Impedances TT MR1 [ Resistor TT 120Ω TT120(PD240) R TT120(PU240) 120Ω 60Ω TT60(PD120) R TT60(PU120) 60Ω ...

Page 59

Table 33: R Effective Impedances (Continued) TT MR1 [ Resistor TT 20Ω TT20(PD40) R TT20(PU40) 20Ω 1. Values assume an RZQ of 240Ω (±1%). Note: ODT Sensitivity If either the temperature or voltage ...

Page 60

Figure 23: ODT Timing Reference Load CK, CK# Table 36: ODT Timing Definitions Symbol Begin Point Definition t AON Rising edge CK# defined by the end point of ODTL on t AOF Rising edge ...

Page 61

Figure 24: AON and AOF Definitions t AON Begin point: Rising edge CK# defined by the end point of ODTL on CK CK# DQ, DM DQS, DQS# TDQS, TDQS# V SSQ t t Figure 25: ...

Page 62

Figure 26: ADC Definition Begin point: Rising edge CK# defined by the end point of ODTL CK CK# V RTT,nom DQ, DM End point: DQS, DQS# Extrapolated TDQS, TDQS# point at V PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – ...

Page 63

Output Driver Impedance The output driver impedance is selected by MR1[5,1] during initialization. The selected value is able to maintain the tight tolerances specified if proper ZQ calibration is per- formed. Output specifications refer to the default output driver unless ...

Page 64

Ohm Output Driver Impedance The 34Ω driver (MR1[ 01) is the default driver. Unless otherwise stated, all timings and specifications listed herein apply to the 34Ω driver only. Its impedance R fined by the value of the ...

Page 65

Ohm Driver The 34Ω driver’s current range has been calculated and summarized in Table 40 (page 65 1.42V. The individual pull-up and pull-down resistors (R DD are defined as follows: • R ON34(PD) • R ON34(PU) ...

Page 66

Table 42: 34 Ohm Driver I OH MR1[5,1] R Resistor ON 34.3Ω ON34(PD) R ON34(PU) 34 Ohm Output Driver Sensitivity If either the temperature or the voltage changes after ZQ calibration, then the tolerance limits listed in ...

Page 67

Alternative 40 Ohm Driver Table 45: 40 Ohm Driver Impedance Characteristics MR1[5,1] R Resistor ON 40Ω 0 Pull-up/pull-down mismatch (MM 1. Tolerance limits assume RZQ of 240Ω (±1%) and are applicable after proper ZQ calibra- Notes: 2. Measurement ...

Page 68

Table 47: 40 Ohm Output Driver Voltage and Temperature Sensitivity PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – Rev. K 04/10 EN Change Min dR dTM dVM dTL dVL dTH 0 ON ...

Page 69

Output Characteristics and Operating Conditions The DRAM uses both single-ended and differential output drivers. The single-ended out- put driver is summarized below, while the differential output driver is summarized in Table 48 while the differential output driver is summarized in ...

Page 70

Table 49: Differential Output Driver Characteristics All voltages are referenced Parameter/Condition Output leakage current: DQ are disabled; 0V ≤ ODT is disabled; ODT is HIGH DDQ Output slew rate: Differential; For rising and falling ...

Page 71

Figure 29: Differential Output Signal X Reference Output Load Figure 30 represents the effective reference load of 25Ω used in defining the relevant device AC timing parameters (except ODT reference timing) as well as the output slew rate measurements. It ...

Page 72

Slew Rate Definitions for Single-Ended Output Signals The single-ended output driver is summarized in Table 48 (page 69). With the reference load for timing measurements, the output slew rate for falling and rising edges is de- fined and measured between ...

Page 73

Slew Rate Definitions for Differential Output Signals The differential output driver is summarized in Table 49 (page 70). With the reference load for timing measurements, the output slew rate for falling and rising edges is de- fined and measured between ...

Page 74

Speed Bin Tables Table 52: DDR3-1066 Speed Bins DDR3-1066 Speed Bin t t CL- RCD- RP Parameter ACTIVATE to internal READ or WRITE delay time PRECHARGE command period ACTIVATE-to-ACTIVATE or REFRESH command period ACTIVATE-to-PRECHARGE command period CWL ...

Page 75

Table 53: DDR3-1333 Speed Bins DDR3-1333 Speed Bin t t CL- RCD- RP Parameter ACTIVATE to internal READ or WRITE delay time PRECHARGE command period ACTIVATE-to-ACTIVATE or REFRESH command period ACTIVATE-to-PRECHARGE command period CWL = 5 CWL ...

Page 76

Table 54: DDR3-1600 Speed Bins DDR3-1600 Speed Bin t t CL- RCD- RP Parameter ACTIVATE to internal READ or WRITE delay time PRECHARGE command period ACTIVATE-to-ACTIVATE or REFRESH command period ACTIVATE-to-PRECHARGE command period CWL = 5 CWL ...

Page 77

Table 55: DDR3-1866 Speed Bins DDR3-1866 Speed Bin t t CL- RCD- RP Parameter Internal READ command to first data ACTIVATE to internal READ or WRITE delay time PRECHARGE command period ACTIVATE-to-ACTIVATE or REFRESH command period ACTIVATE-to-PRECHARGE command period CL ...

Page 78

Electrical Characteristics and AC Operating Conditions Table 56: Electrical Characteristics and AC Operating Conditions Notes 1–8 apply to the entire table Parameter Clock period average 0°C to 85°C C DLL disable mode T = >85°C to 95°C C ...

Page 79

Table 56: Electrical Characteristics and AC Operating Conditions (Continued) Notes 1–8 apply to the entire table Parameter Data setup time to Base (specification) DQS, DQS V/ns REF Data setup time to Base (specification) DQS, DQS ...

Page 80

Table 56: Electrical Characteristics and AC Operating Conditions (Continued) Notes 1–8 apply to the entire table Parameter DQS, DQS# High-Z time (RL + BL/2) DQS, DQS# differential READ preamble DQS, DQS# differential READ postamble DLL locking time CTRL, CMD, ADDR ...

Page 81

Table 56: Electrical Characteristics and AC Operating Conditions (Continued) Notes 1–8 apply to the entire table Parameter MULTIPURPOSE REGISTER READ burst end to mode register set for multipurpose register exit ZQCL command: Long POWER-UP and RE- calibration time SET operation ...

Page 82

Table 56: Electrical Characteristics and AC Operating Conditions (Continued) Notes 1–8 apply to the entire table Parameter Valid clocks before self refresh exit, power-down exit, or reset exit CKE MIN pulse width Command pass disable delay Power-down entry to power-down ...

Page 83

Table 56: Electrical Characteristics and AC Operating Conditions (Continued) Notes 1–8 apply to the entire table Parameter R synchronous turn-on delay TT R synchronous turn-off delay TT R turn-on from ODTL on reference TT R turn-off from ODTL off reference ...

Page 84

Parameters are applicable with 0°C ≤ T Notes: 2. All voltages are referenced Output timings are only valid for R 4. The unit 5. AC timing and I 6. All timings that use time-based values (ns, ...

Page 85

The setup and hold times are listed converting the base specification values (to which 21. When the device is operated with input clock jitter, this parameter needs to be derated 22. Single-ended signal parameter. 23. The DRAM output timing ...

Page 86

Although CKE is allowed to be registered LOW after a REFRESH command when 38. ODT turn-on time MIN is when the device leaves High-Z and ODT resistance begins to 39. Half-clock output parameters must be derated by the actual ...

Page 87

Electrical Characteristics and AC Operating Conditions Table 57: Electrical Characteristics and AC Operating Conditions for Speed Extensions Notes 1–8 apply to the entire table Parameter Clock period average: DLL disable mode T = 0°C to 85° >85°C ...

Page 88

Table 57: Electrical Characteristics and AC Operating Conditions for Speed Extensions (Continued) Notes 1–8 apply to the entire table Parameter Cumulative error across 2 cycles 3 cycles 4 cycles 5 cycles 6 cycles 7 cycles 8 cycles 9 cycles 10 ...

Page 89

Table 57: Electrical Characteristics and AC Operating Conditions for Speed Extensions (Continued) Notes 1–8 apply to the entire table Parameter DQS, DQS# rising to CK, CK# rising DQS, DQS# differential input low pulse width DQS, DQS# differential input high pulse ...

Page 90

Table 57: Electrical Characteristics and AC Operating Conditions for Speed Extensions (Continued) Notes 1–8 apply to the entire table Parameter ACTIVATE-to-PRECHARGE command period ACTIVATE-to-ACTIVATE command period ACTIVATE-to-ACTIVATE minimum com- 1KB page size mand 2KB page size period Four ACTIVATE 1KB ...

Page 91

Table 57: Electrical Characteristics and AC Operating Conditions for Speed Extensions (Continued) Notes 1–8 apply to the entire table Parameter Begin power supply ramp to power supplies stable RESET# LOW to power supplies stable RESET# LOW to I/O and R ...

Page 92

Table 57: Electrical Characteristics and AC Operating Conditions for Speed Extensions (Continued) Notes 1–8 apply to the entire table Parameter Power-down entry period: ODT either synchronous or asynchronous Power-down exit period: ODT either synchronous or asynchronous ACTIVATE command to power-down ...

Page 93

Table 57: Electrical Characteristics and AC Operating Conditions for Speed Extensions (Continued) Notes 1–8 apply to the entire table Parameter Asynchronous R turn-off delay TT (power-down with DLL off) ODT HIGH time with WRITE command and BL8 ODT HIGH time ...

Page 94

Parameters are applicable with 0°C ≤ T Notes: 2. All voltages are referenced Output timings are only valid for R 4. The unit 5. AC timing and I 6. All timings that use time-based values (ns, ...

Page 95

The setup and hold times are listed converting the base specification values (to which 21. When the device is operated with input clock jitter, this parameter needs to be derated 22. Single-ended signal parameter. 23. The DRAM output timing ...

Page 96

Although CKE is allowed to be registered LOW after a REFRESH command when 38. ODT turn-on time MIN is when the device leaves High-Z and ODT resistance begins to 39. Half-clock output parameters must be derated by the actual ...

Page 97

Command and Address Setup, Hold, and Derating The total sheet (page 78)) to the Δ (page 98)), respectively. Example: transition, the input signal has to remain above/below V t VAC (see Table 60 (page 98)). Although the total setup time ...

Page 98

Table 59: Derating Values for AC175 Threshold: V CMD/ ADDR 4.0 V/ns 3.0 V/ns Slew Rate Δ Δ Δ 0.9 –2 ...

Page 99

Table 61: Derating Values for AC135 Threshold: V CMD/ ADDR 4.0 V/ns 3.0 V/ns Slew Rate Δ Δ Δ 0.9 2 ...

Page 100

Table 63: Minimum Required Time Below V IL(AC) t Slew Rate (V/ns) VAC at 175mV (ps) >2.0 75 2.0 57 1.5 50 1.0 38 0.9 34 0.8 29 0.7 22 0.6 13 0.5 <0.5 PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – Rev. K ...

Page 101

Figure 33: Nominal Slew Rate and CK CK# DQS# DQS V DDQ V IH(AC)min V V IH(DC)min V REF(DC) V IL(DC)max V IL(DC)max V SS Setup slew rate falling signal 1. Both the clock and the strobe are drawn on ...

Page 102

Figure 34: Nominal Slew Rate for CK CK# DQS# DQS V DDQ V IH(AC)min V IH(DC)min REF(DC) V IL(DC)max V IL(AC)max V SS Hold slew rate rising signal 1. Both the clock and the strobe are ...

Page 103

Figure 35: Tangent Line for CK CK# DQS# DQS V DDQ V IH(AC)min V REF region V IH(DC)min V REF(DC) V IL(DC)max V IL(DC)max Nominal line Both the clock and the strobe are drawn on different time ...

Page 104

Figure 36: Tangent Line for CK CK# DQS# DQS V DDQ V IH(AC)min V IH(DC)min region V REF(DC region V IL( DC)max V IL( AC)max Both the clock and the strobe ...

Page 105

Data Setup, Hold, and Derating The total sheet ble 56 (page 78)) to the Δ respectively. Example: the input signal has to remain above/below V ble 68 (page 107)). Although the total setup time for slow slew rates might be ...

Page 106

Table 65: Derating Values for Shaded cells indicate slew rate combinations not supported 4.0 V/ns 3.0 V/ns DQ Slew Δ Δ Δ Δ Rate V/ 1.0 ...

Page 107

Table 67: Derating Values for Shaded cells indicate slew rate combinations not supported 4.0 V/ns 3.0 V/ns DQ Slew Δ Δ Δ Δ Rate V/ 1.0 ...

Page 108

Figure 37: Nominal Slew Rate and CK CK# DQS# DQS V DDQ V IH(AC)MIN V REF region V IH(DC)min V REF(DC) V IL(DC)max V IL(AC)max V SS Setup slew rate falling signal 1. Both the clock and the strobe are ...

Page 109

Figure 38: Nominal Slew Rate for CK CK# DQS# DQS V DDQ V IH(AC)min V IH(DC)min region V REF(DC) V IL(DC)max V IL(AC)max V SS Hold slew rate rising signal 1. Both the clock and the strobe ...

Page 110

Figure 39: Tangent Line for CK CK# DQS# DQS V DDQ V IH(AC)min V REF region V IH(DC)min V REF(DC) V IL(DC)max V IL(AC)max Nominal line Both the clock and the strobe are drawn on different time ...

Page 111

Figure 40: Tangent Line for CK CK# DQS# DQS V DDQ V IH(AC)min V IH(DC)min region V REF(DC region V IL(DC)max V IL(AC)max Both the clock and the strobe are drawn ...

Page 112

Commands – Truth Tables Table 69: Truth Table – Command Notes 1–5 apply to the entire table Function Symbol MODE REGISTER SET MRS REFRESH REF Self refresh entry SRE Self refresh exit SRX Single-bank PRECHARGE PRE PRECHARGE all banks PREA ...

Page 113

RESET# is LOW enabled and used only for asynchronous reset. Thus, RESET# must be 3. The state of ODT does not affect the states described in this table. 4. Operations apply to the bank defined by the bank address. ...

Page 114

Table 70: Truth Table – CKE Notes 1–2 apply to the entire table; see Table 69 (page 112) for additional command details Previous Cycle 3 Current State ( Power-down L L Self refresh L L Bank(s) active H ...

Page 115

Commands DESELECT The DESELT (DES) command (CS# HIGH) prevents new commands from being execu- ted by the DRAM. Operations already in progress are not affected. NO OPERATION The NO OPERATION (NOP) command (CS# LOW) prevents unwanted commands from being registered ...

Page 116

BC4 (chop) or BL8 is used. After a READ command is issued, the READ burst may not be interrupted. Table 71: READ Command Summary Function Symbol READ BL8MRS, BC4MRS BC4OTF BL8OTF READ with BL8MRS, auto BC4MRS precharge BC4OTF ...

Page 117

A READ or WRITE command to a different bank is allowed during concurrent auto precharge as long as it does not interrupt the data transfer in the current bank and does not violate any other timing parameters. Input A10 ...

Page 118

Figure 41: Refresh Mode T0 T1 CK# CK CKE NOP 1 Command PRE Address All banks A10 One bank Bank(s) 3 BA[2:0] DQS, DQS NOP commands are shown for ease of illustration; other valid ...

Page 119

DLL Disable Mode If the DLL is disabled by the mode register (MR1[0] can be switched during initialization or later), the DRAM is targeted, but not guaranteed, to operate similarly to the normal mode with a few notable exceptions: • ...

Page 120

Figure 42: DLL Enable Mode to DLL Disable Mode T0 T1 CK# CK CKE MRS 2 Command NOP t MOD 6 ODT 9 Notes: 1. Any valid command. 2. Disable DLL by setting MR1[ Enter SELF REFRESH. ...

Page 121

Figure 43: DLL Disable Mode to DLL Enable Mode T0 Ta0 CK# CK CKE SRE 1 Command NOP t CKSRE 7 ODTL off + 1 × ODT 10 Notes: 1. Enter SELF REFRESH. 2. Exit SELF REFRESH. 3. ...

Page 122

Figure 44: DLL Disable DQSCK Timing T0 T1 CK# CK READ NOP Command Valid Address DQS, DQS# DLL on DQ BL8 DLL on RL (DLL disable ( DQS, DQS# DLL off DQ ...

Page 123

Input Clock Frequency Change When the DDR3 SDRAM is initialized, it requires the clock to be stable during most nor- mal states of operation. This means that after the clock frequency has been set to the stable state, the clock ...

Page 124

Figure 45: Change Frequency During Precharge Power-Down Previous clock frequency CKSRE CKE t CPDED Command NOP NOP Address t AOFPD/ t AOF ODT DQS, DQS# ...

Page 125

Write Leveling For better signal integrity, DDR3 SDRAM memory modules adopted fly-by topology for the commands, addresses, control signals, and clocks. Write leveling is a scheme for the memory controller to adjust or deskew the DQS strobe (DQS, DQS#) to ...

Page 126

When write leveling is enabled, the rising edge of DQS samples CK, and the prime DQ outputs the sampled CK’s status. The prime DQ for configuration is DQ0 with all other DQ (DQ[7:1]) driving LOW. The ...

Page 127

Write Leveling Procedure A memory controller initiates the DRAM write leveling mode by setting MR1[ assuming the other programable features (MR0, MR1, MR2, and MR3) are first set and the DLL is fully reset and locked. The ...

Page 128

Figure 47: Write Leveling Sequence CK# CK MRS 1 NOP 2 Command t MOD ODT t WLDQSEN Differential DQS 4 Prime DQ 5 Early remaining DQ Late remaining DQ 1. MRS: Load MR1 to enter write leveling mode. Notes: 2. ...

Page 129

Write Leveling Mode Exit Procedure After the DRAM are leveled, they must exit from write leveling mode before the normal mode can be used. Figure 48 (page 129) depicts a general procedure in exiting write leveling mode. After the last ...

Page 130

Initialization The following sequence is required for power up and initialization, as shown in Fig- ure 49 (page 131): 1. Apply power. RESET# is recommended to be below 0.2 × Until stable power, maintain RESET# LOW to ensure ...

Page 131

Figure 49: Initialization Sequence T (MAX) = 200ms V See power-up DD conditions in the V DDQ initialization sequence text, V set REF Power-up ramp CK 20ns RESET# T (MIN) = ...

Page 132

Mode Registers Mode registers (MR0–MR3) are used to define various modes of programmable opera- tions of the DDR3 SDRAM. A mode register is programmed via the mode register set (MRS) command during initialization, and it retains the stored information (except ...

Page 133

Figure 51: MRS to nonMRS Command Timing ( Command Address CKE 1. Prior to issuing the MRS command, all banks must be idle (they must be precharged, Notes: 2. Prior to Ta2 when CKE must be ...

Page 134

The programmed burst length applies to both READ and WRITE bursts. Figure 52: Mode Register 0 (MR0) Definitions M16 M15 Mode Register 0 0 Mode register 0 (MR0 Mode register 1 (MR1) 1 ...

Page 135

Table 75: Burst Order Starting Burst READ/ Column Address Length WRITE (A[2, 1, 0]) 4 chop READ ...

Page 136

WR (ns roundup ( Precharge Power-Down (Precharge PD) The precharge PD bit applies only when precharge power-down mode is being used. When MR0[12] is set to 0, the DLL is off during precharge power-down providing a low- ...

Page 137

Mode Register 1 (MR1) The mode register 1 (MR1) controls additional functions and features not available in the other mode registers: Q OFF (OUTPUT DISABLE), TDQS (for the x8 configuration only), DLL ENABLE/DLL DISABLE, R CAS ADDITIVE latency, and OUTPUT ...

Page 138

If the DLL is enabled prior to entering self refresh mode, the DLL is automatically disa- bled when entering SELF REFRESH operation and is automatically reenabled and reset upon exit of SELF REFRESH operation. If the DLL is disabled prior ...

Page 139

When the TDQS function is enabled via the mode regis- ter, the DM function is not supported. When the TDQS function is disabled, the DM function is provided, and the TDQS# ball is not used. ...

Page 140

CL, a typical application using this feature sets CK. The READ or WRITE command is held for the time of the AL before it is released internally to the DDR3 SDRAM device. ...

Page 141

Mode Register 2 (MR2) The mode register 2 (MR2) controls additional functions and features not available in the other mode registers. These additional functions are CAS WRITE latency (CWL), AU- TO SELF REFRESH (ASR), SELF REFRESH TEMPERATURE (SRT), and DYNAMIC ...

Page 142

Figure 57: CAS Write Latency BC4 T0 T1 CK# CK ACTIVE n WRITE n Command t RCD (MIN) DQS, DQS# DQ AUTO SELF REFRESH (ASR) Mode register MR2[6] is used to disable/enable the ASR function. When ASR is disabled, the ...

Page 143

SRT vs. ASR If the normal case temperature limit of 85°C is not exceeded, then neither SRT nor ASR is required, and both can be disabled throughout operation. However, if the extended temperature option of +95°C is needed, the user ...

Page 144

Mode Register 3 (MR3) The mode register 3 (MR3) controls additional functions and features not available in the other mode registers. Currently defined is the MULTIPURPOSE REGISTER (MPR). This function is controlled via the bits shown in Figure 58 (page ...

Page 145

Figure 59: Multipurpose Register (MPR) Block Diagram Memory core 1. A predefined data pattern can be read out of the MPR with an external READ command. Notes: 2. MR3[2] defines whether the data flow comes from the memory core or ...

Page 146

Burst order bit 0 (the first bit) is assigned to LSB, and burst order bit 7 (the last bit) is assigned to MSB • A[9:3] are a “Don’t Care” • A10 is a “Don’t Care” • A11 is a ...

Page 147

Figure 60: MPR System Read Calibration with BL8: Fixed Burst Order Single Readout T0 Ta0 Tb0 Tb1 CK# CK READ 1 Command PREA MRS NOP MOD Bank address 3 Valid 0 2 A[1: ...

Page 148

Figure 61: MPR System Read Calibration with BL8: Fixed Burst Order, Back-to-Back Readout Tc0 CK# CK READ 1 READ 1 Command PREA MRS t CCD MOD Bank address 3 Valid Valid ...

Page 149

Figure 62: MPR System Read Calibration with BC4: Lower Nibble, Then Upper Nibble Tc0 CK# CK READ 1 READ 1 Command PREA MRS MOD t CCD Bank address 3 Valid Valid ...

Page 150

Figure 63: MPR System Read Calibration with BC4: Upper Nibble, Then Lower Nibble Tc0 CK# CK READ 1 READ 1 Command PREA MRS MOD t CCD Bank address 3 Valid Valid ...

Page 151

MPR Read Predefined Pattern The predetermined read calibration pattern is a fixed pattern The following is an example of using the read out predetermined read calibration pattern. The example is to ...

Page 152

ZQ CALIBRATION Operation The ZQ CALIBRATION command is used to calibrate the DRAM output drivers (R and ODT values (R 240Ω (±1%) external resistor is connected from the DRAM’s ZQ ball to V DDR3 SDRAM need a longer time to ...

Page 153

ACTIVATE Operation Before any READ or WRITE commands can be issued to a bank within the DRAM, a row in that bank must be opened (activated). This is accomplished via the ACTIVATE com- mand, which selects both the bank and ...

Page 154

Figure 66: Example: FAW T0 T1 CK# CK Command ACT NOP Address Row BA[2:0] Bank a t RRD PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – Rev. K 04/ ACT NOP ACT Row Row Bank b Bank c t ...

Page 155

READ Operation READ bursts are initiated with a READ command. The starting column and bank ad- dresses are provided with the READ command and auto precharge is either enabled or disabled for that burst access. If auto precharge is enabled, ...

Page 156

DDR3 SDRAM does not allow interrupting or truncating any READ burst. Data from any READ burst must be completed before a subsequent WRITE burst is al- lowed. An example of a READ burst followed by a ...

Page 157

Figure 68: Consecutive READ Bursts (BL8 CK# CK Command 1 READ NOP NOP NOP t CCD Bank, Address 2 Col n DQS, DQS NOP commands are shown for ease of ...

Page 158

Figure 70: Nonconsecutive READ Bursts CK# CK Command READ NOP NOP NOP NOP Bank a, Address Col DQS, DQS Notes ...

Page 159

Figure 72: READ (BC4) to WRITE (BC4) OTF CK# CK Command 1 READ NOP NOP NOP READ-to-WRITE command delay = CCD Bank, Address 2 Col n DQS, ...

Page 160

Figure 74: READ to PRECHARGE (BC4 CK# CK Command READ NOP NOP NOP NOP Bank a, Address Col n t RTP DQS, DQS RAS Figure 75: READ to PRECHARGE ( ...

Page 161

DQS to DQ output timing is shown in Figure 77 (page 162). The DQ transitions be- tween valid data outputs must be within DQS must also maintain a minimum HIGH and LOW time of the READ preamble, the DQ balls ...

Page 162

Figure 77: Data Output Timing – DQSQ and Data Valid Window T0 T1 CK# CK Command 1 READ NOP Bank, Address 2 Col n DQS, DQS (last data valid (first data no longer valid) All ...

Page 163

HZ and parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (DQ). Figure 79 (page 164) shows a method to calculate the point when the device is no longer driving ...

Page 164

Figure 79: Method for Calculating t HZ (DQS (DQ (DQS (DQ) end point = 2 × Within a burst, the rising strobe edge is not necessarily fixed at Notes: 2. ...

Page 165

Figure 81: RPST Timing Single-ended signal, provided as background information DQS# Single-ended signal, provided as background information DQS - DQS# Resulting differential signal relevant for t RPST specification PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – Rev. K 04/ CK# DQS ...

Page 166

WRITE Operation WRITE bursts are initiated with a WRITE command. The starting column and bank ad- dresses are provided with the WRITE command, and auto precharge is either enabled or disabled for that access. If auto precharge is selected, the ...

Page 167

Figure 82: WPRE Timing CK CK# DQS - DQS# Resulting differential signal relevant for t WPRE specification t Figure 83: WPST Timing CK CK# DQS - DQS# Resulting differential signal relevant for t WPST specification PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – ...

Page 168

Figure 84: WRITE Burst CK# CK Command 1 WRITE NOP NOP CWL Bank, Address 2 Col n t DQSS (MIN) DQS, DQS DQSS (NOM) DQS, DQS DQSS ...

Page 169

Figure 85: Consecutive WRITE (BL8) to WRITE (BL8 CK# CK Command 1 WRITE NOP NOP NOP t CCD Address 2 Valid DQS, DQS NOP commands are shown for ease of ...

Page 170

Figure 87: Nonconsecutive WRITE to WRITE CK# CK Command WRITE NOP NOP NOP NOP Address Valid WL = CWL + DQS, DQS Notes ( data-in ...

Page 171

Figure 89: WRITE to READ (BC4 Mode Register Setting CK# CK Command 1 WRITE NOP NOP Address 3 Valid DQS, DQS NOP commands are shown for ease of illustration; other commands ...

Page 172

Figure 90: WRITE (BC4 OTF) to READ (BC4 OTF CK# CK Command 1 WRITE NOP NOP NOP Address 3 Valid DQS, DQS Notes: 1. NOP commands are shown for ease of ...

Page 173

Figure 91: WRITE (BL8) to PRECHARGE CK# CK Command WRITE NOP NOP NOP Valid Address CWL DQS, DQS# DQ BL8 data-in from column n. Notes: 2. Seven subsequent ...

Page 174

Figure 93: WRITE (BC4 OTF) to PRECHARGE CK# CK Command 1 WRITE NOP NOP Bank, Address 3 Col n DQS, DQS NOP commands are shown for ease of illustration; other commands may be valid ...

Page 175

Figure 94: Data Input Timing DQS, DQS# PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – Rev. K 04/ WPRE t DQSH t DQSL 175 2Gb: x4, x8, x16 DDR3 SDRAM t DH Transitioning Data Micron Technology, ...

Page 176

PRECHARGE Operation Input A10 determines whether one bank or all banks are to be precharged, and in the case where only one bank precharged, inputs BA[2:0] select the bank. When all banks are to be precharged, inputs ...

Page 177

Figure 95: Self Refresh Entry/Exit Timing CKSRE CPDED CKE t IS ODT 2 RESET# 2 SRE (REF) 3 NOP 4 Command NOP Address Enter self refresh mode (synchronous) ...

Page 178

Extended Temperature Usage Micron’s DDR3 SDRAM supports the optional extended temperature range of 0°C to +95°C, T The extended temperature range DRAM must be refreshed externally at 2X (double re- fresh) anytime the case temperature is above +85°C (and does ...

Page 179

Power-Down Mode Power-down is synchronously entered when CKE is registered LOW coincident with a NOP or DES command. CKE is not allowed to go LOW while either an MRS, MPR, ZQCAL, READ, or WRITE operation is in progress. CKE is ...

Page 180

A summary of the two power-down modes is listed in Table 81 (page 180). While in either power-down state, CKE is held LOW, RESET# is held HIGH, and a stable clock signal must be maintained. ODT ...

Page 181

Figure 96: Active Power-Down Entry and Exit Command Valid NOP t IS CKE t IH Address Valid Enter power-down mode PDF: 09005aef826aaadc 2Gb_DDR3_SDRAM.pdf – Rev. K 04/ Ta0 t CL ...

Page 182

Figure 97: Precharge Power-Down (Fast-Exit Mode) Entry and Exit Command NOP t IS CKE Enter power-down mode Figure 98: Precharge Power-Down (Slow-Exit Mode) Entry and Exit ...

Page 183

Figure 99: Power-Down Entry After READ or READ with Auto Precharge (RDAP Ta0 Ta1 CK# CK READ/ NOP NOP NOP Command RDAP CKE Address Valid DQS, DQS# DQ BL8 DQ BC4 Figure 100: ...

Page 184

Figure 101: Power-Down Entry After WRITE with Auto Precharge (WRAP Ta0 Ta1 CK# CK Command WRAP NOP NOP NOP CKE Address Valid A10 CWL DQS, DQS# DQ BL8 DQ BC4 1. Notes: 2. CKE ...

Page 185

Figure 103: ACTIVATE to Power-Down Entry Command ACTIVE Address Valid CKE t ACTPDEN Figure 104: PRECHARGE to Power-Down Entry Command PRE All/single Address bank ...

Page 186

Figure 105: MRS Command to Power-Down Entry Command MRS NOP Address Valid CKE Figure 106: Power-Down Exit to Refresh to Power-Down Entry Command NOP ...

Page 187

RESET Operation The RESET signal (RESET asynchronous signal that triggers any time it drops LOW, and there are no restrictions about when it can go LOW. After RESET# goes LOW, it must remain LOW for 100ns. During this ...

Page 188

Figure 107: RESET Sequence System RESET (warm boot) Stable and valid clock CK (MIN) = MAX (10ns CK 100ns (MIN) t IOZ = 20ns RESET 10ns (MIN) CKE ODT ...

Page 189

On-Die Termination (ODT) ODT is a feature that enables the DRAM to enable/disable and turn on/off termination resistance for each DQ, DQS, DQS#, and DM for the x4 and x8 configurations (and TDQS, TDQS# for the x8 configuration, when enabled). ...

Page 190

Table 82: Truth Table – ODT (Nominal) Note 1 applies to the entire table MR1[ ODT Pin 000 0 000 1 000–101 0 000–101 1 110 and 111 X 1. Assumes dynamic ODT is disabled (see Dynamic ODT ...

Page 191

Dynamic ODT In certain application cases, and to further enhance signal integrity on the data bus desirable that the termination strength of the DDR3 SDRAM can be changed without issuing an MRS command, essentially changing the ODT termination ...

Page 192

Table 85: Mode Registers for R MR1 (R ) TT,nom RZQ = 240Ω Note: Table 86: Mode Registers ...

Page 193

Figure 109: Dynamic ODT: ODT Asserted Before and After the WRITE, BC4 CK# CK Command NOP NOP NOP NOP WRS4 NOP Address Valid ODTH4 ODT ODTL on t AON (MIN AON ...

Page 194

Figure 111: Dynamic ODT: ODT Pin Asserted Together with WRITE Command for 6 Clock Cycles, BL8 CK# CK NOP WRS8 NOP Command ODTL cnw Address Valid ODTL on ODT R TT DQS, DQS Via MRS ...

Page 195

Figure 112: Dynamic ODT: ODT Pin Asserted with WRITE Command for 6 Clock Cycles, BC4 CK# CK Command NOP WRS4 NOP ODTL Address Valid ODT R TT DQS, DQS Via MRS or OTF ...

Page 196

Synchronous ODT Mode Synchronous ODT mode is selected whenever the DLL is turned on and locked and when either R modes are: • Any bank active with CKE HIGH • Refresh mode with CKE HIGH • Idle mode with CKE ...

Page 197

Table 88: Synchronous ODT Parameters Symbol Description ODTL on ODT synchronous turn-on delay ODTL off ODT synchronous turn-off delay ODTH4 ODT minimum HIGH time after ODT assertion or WRITE (BC4) ODTH8 ODT minimum HIGH time after WRITE (BL8) t AON ...

Page 198

Figure 115: Synchronous ODT (BC4 CK# CK CKE Command NOP NOP NOP NOP NOP ODTH4 ODT ODTL Notes: TT,nom 2. ODT must be ...

Page 199

ODT Off During READs Because the device cannot terminate and drive at the same time least one-half clock cycle before the READ preamble by driving the ODT ball LOW (if either R amble, as shown in the following ...

Page 200

Figure 116: ODT During READs CK# CK Command READ NOP NOP NOP NOP Address Valid ODTL off = CWL + ODT DQS, DQS# DQ Note: 1. ODT must be ...

Related keywords