IC ACEX 1K FPGA 10K 100-TQFP

EP1K10TC100-3

Manufacturer Part NumberEP1K10TC100-3
DescriptionIC ACEX 1K FPGA 10K 100-TQFP
ManufacturerAltera
SeriesACEX-1K®
EP1K10TC100-3 datasheet
 

Specifications of EP1K10TC100-3

Number Of Logic Elements/cells576Number Of Labs/clbs72
Total Ram Bits12288Number Of I /o66
Number Of Gates56000Voltage - Supply2.375 V ~ 2.625 V
Mounting TypeSurface MountOperating Temperature0°C ~ 70°C
Package / Case100-TQFP, 100-VQFPLead Free Status / RoHS StatusContains lead / RoHS non-compliant
Other names544-1027  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Page 21
22
Page 22
23
Page 23
24
Page 24
25
Page 25
26
Page 26
27
Page 27
28
Page 28
29
Page 29
30
Page 30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
Page 28/86

Download datasheet (2Mb)Embed
PrevNext
ACEX 1K Programmable Logic Device Family Data Sheet
For improved routing, the row interconnect consists of a combination of
full-length and half-length channels. The full-length channels connect to
all LABs in a row; the half-length channels connect to the LABs in half of
the row. The EAB can be driven by the half-length channels in the left half
of the row and by the full-length channels. The EAB drives out to the full-
length channels. In addition to providing a predictable, row-wide
interconnect, this architecture provides increased routing resources. Two
neighboring LABs can be connected using a half-row channel, thereby
saving the other half of the channel for the other half of the row.
Table 6
resources available in each ACEX 1K device.
In addition to general-purpose I/O pins, ACEX 1K devices have six
dedicated input pins that provide low-skew signal distribution across the
device. These six inputs can be used for global clock, clear, preset, and
peripheral output-enable and clock-enable control signals. These signals
are available as control signals for all LABs and IOEs in the device. The
dedicated inputs can also be used as general-purpose data inputs because
they can feed the local interconnect of each LAB in the device.
Figure 14
row, column, and local interconnects, as well as the associated cascade
and carry chains. Each LAB is labeled according to its location: a letter
represents the row and a number represents the column. For example,
LAB B3 is in row B, column 3.
28
summarizes the FastTrack Interconnect routing structure
Table 6. ACEX 1K FastTrack Interconnect Resources
Device
Rows
EP1K10
3
EP1K30
6
EP1K50
10
EP1K100
12
shows the interconnection of adjacent LABs and EABs, with
Channels per
Columns
Row
144
24
216
36
216
36
312
52
Altera Corporation
Channels per
Column
24
24
24
24