SC4524CSETRT Semtech, SC4524CSETRT Datasheet - Page 13

no-image

SC4524CSETRT

Manufacturer Part Number
SC4524CSETRT
Description
IC BUCK ADJ 2A 8SOIC
Manufacturer
Semtech
Series
-r
Type
Step-Down (Buck), PWM - Current Moder
Datasheet

Specifications of SC4524CSETRT

Internal Switch(s)
Yes
Synchronous Rectifier
No
Number Of Outputs
1
Voltage - Output
1 V ~ 26.88 V
Current - Output
2A
Frequency - Switching
300kHz ~ 1.3MHz
Voltage - Input
3 V ~ 28 V
Operating Temperature
-40°C ~ 105°C
Mounting Type
Surface Mount
Package / Case
8-SOIC (0.154", 3.90mm Width) Exposed Pad
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
SC4524CSETR

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
SC4524CSETRT
Manufacturer:
NXP
Quantity:
8 340
Part Number:
SC4524CSETRT
Manufacturer:
SEMTECH
Quantity:
102
Part Number:
SC4524CSETRT
Manufacturer:
SEMTECH/美国升特
Quantity:
20 000
Part Number:
SC4524CSETRT
Manufacturer:
SEMTECH
Quantity:
8 709
Company:
Part Number:
SC4524CSETRT
Quantity:
3 000
D
D
C
C
O
O
20
20
+
+
D ⋅
D ⋅
O
O
=
=
I
I
1
1
V
V
O
O
L
L
+
+
V
V
O
O
V
V
0 .
0 .
+
+
I
I
%
%
 
 
V
V
D
D
O
O
F
F
V
V
O
O
I
I
+
+
 
 
Applications Information (Cont.)
IN
IN
Figures 6(b) and (c). Methods of Bootstrapping the
SC4524C
D
D
Loop Compensation
The goal of compensation is to shape the frequency
response of the converter so as to achieve high DC
accuracy and fast transient response while maintaining
loop stability.
O
O
V
V
SW
SW
V
V
ESR
ESR
I
I
D
D
V
V
)
)
O
O
V
V
D
D
)
)
F
F
D
D
1 (
1 (
CESAT
CESAT
FB
FB
1
1
L
L
F
F
SW
SW
1 (
1 (
1
1
SW
SW
+
+
1 (
1 (
REF
REF
) D
) D
8
8
Figure 7. Block diagram of control loops
VIN
) D
) D
VIN
F
F
+
+
) D
) D
-
-
CONTROLLER AND SCHOTTKY DIODE
CONTROLLER AND SCHOTTKY DIODE
SW
SW
1
1
EA
EA
R
R
R
R
D
D
D
D
L
L
L
L
I
I
I
I
C
C
D
D
D
D
D
D
D
D
C
C
C5
C5
R7
R7
RMS
RMS
RMS
RMS
4
4
4
4
1
1
1
1
I
I
V
V
I
I
V
V
IN
IN
IN
IN
C
C
=
=
=
=
L
L
L
L
D4 is either a pn juntion diode or a Schottky diode
=
=
D3
D3
D3
=
=
O
O
O
O
=
=
=
=
O
O
COMP
COMP
=
=
=
=
_
_
_
_
>
>
>
>
V
V
V
V
R
R
R
R
IN
IN
=
=
=
=
CIN
CIN
CIN
CIN
V (
V (
V (
V (
depending on the operating temperature.
 
 
Vramp
Vramp
IN
IN
IN
IN
Vc
Vc
6
6
6
6
V (
V (
V (
V (
4
4
4
4
SC4524C
SC4524C
D
D
D
D
O
O
20
20
20
20
O
O
+
+
+
+
D1
D ⋅
D ⋅
D ⋅
D ⋅
O
O
O
O
=
=
=
=
I
I
I
I
BST
1
1
1
1
V
V
V
V
L
L
L
L
+
+
+
+
GND
GND
BST
V
V
R
R
C
C
C
C
G
G
R
R
C8
C8
A
A
V
V
A
A
C
C
C
C
O
O
CA
CA
O
O
V
V
V
V
V
V
V
V
0 .
0 .
+
+
I
I
MODULATOR
MODULATOR
0 .
0 .
+
+
%
%
%
%
I
I
V
V
D
D
D
D
O
O
O
O
V
V
F
F
F
F
V
V
V
V
7
7
7
7
O
O
5
5
o
o
c
c
PWM
PWM
5
5
O
O
C
C
C
C
8
8
8
8
I
I
I
I
+
+
+
+
 
 
 
 
IN
IN
IN
IN
O
O
PWM
PWM
V
V
V
V
SW
SW
SW
SW
D
D
D
D
O
O
V
V
V
V
ESR
ESR
ESR
ESR
=
=
=
=
=
=
=
=
=
=
I
I
I
I
=
=
=
=
=
=
=
=
D
D
V
V
D
D
)
)
)
)
V
V
SW
O
O
O
O
SW
V
V
V
V
D
D
D
D
)
)
)
)
10
10
. 0
. 0
1 (
1 (
F
F
F
F
2
2
D
D
2
2
(b)
1 (
1 (
D
D
2
2
2
2
1 (
1 (
(C)
Rs
Rs
CESAT
CESAT
CESAT
CESAT
1
1
1
1
L
L
L
L
F
F
F
F
g
g
SW
SW
SW
SW
⋅ π
⋅ π
1 (
1 (
1 (
1 (
π
π
20
20
20
20
28
28
⋅ π
⋅ π
π
π
1
1
SW
SW
SW
SW
+
+
1
1
+
+
+
+
G
G
m
m
10
10
1 (
1 (
1 (
1 (
A
A
20
20
F
F
F
F
C
C
CA
CA
1
1
Io
Io
1
1
16
16
600
600
) D
) D
/ s
/ s
1 Z
1 Z
P
P
) D
) D
8
8
8
8
D4
1
1
R
R
15
15
) D
) D
) D
) D
log
log
log
log
10
10
20
20
R
R
R
R
G
G
D 2
D 2
9 .
9 .
D2
F
F
F
F
R
R
) D
) D
) D
) D
ω
ω
SW
SW
10
10
7
7
7
7
SW
SW
SW
SW
PWM
PWM
S
S
p
p
1
1
1
1
C1
 
 
10
10
1 ( )
1 ( )
3
3
,
,
C1
G
G
28
28
3
3
1
1
D1
1 (
1 (
CA
CA
=
=
1
1
C
C
C
C
3
3
1
1
+
+
22
22
22
22
O
O
O
O
L1
L1
R
R
+
+
R
R
R
R
C
C
C
C
G
G
C
C
C
C
6
6
A
A
A
A
/ s
/ s
V
V
V
V
22
22
 
 
 
 
Co
Co
Resr
Resr
S
S
1 .
1 .
7
7
o
o
c
c
PWM
PWM
7
7
C
C
C
C
5
5
R s
R s
8
8
5
5
8
8
.
.
1 .
1 .
1
1
k 3
k 3
ω
ω
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
VOUT>8V
1 .
1 .
2
2
ESR
ESR
VOUT
n
n
10
10
ω
ω
10
10
. 0
. 0
1 (
1 (
10
10
π
π
2
2
2
2
2
2
2
2
Q
Q
g
g
F
F
p
p
10
10
⋅ π
⋅ π
C
C
π
π
1
1
20
20
20
20
28
28
⋅ π
⋅ π
π
π
G
G
+
+
+
+
m
m
C
C
10
10
A
A
3
3
20
20
F
F
F
F
O
O
3
3
C
C
C
C
Vo
Vo
CA
CA
1
1
1
1
16
16
600
600
s
s
/ s
/ s
1 Z
1 Z
P
P
3
3
)
)
R4
R4
R6
R6
R
R
=
=
1
1
O
O
R
R
2
2
15
15
log
log
log
log
10
10
20
20
1
1
C
C
2
2
=
=
R
R
R
R
. 0
. 0
G
G
9 .
9 .
/
/
R
R
ω
ω
O
O
⋅ π
⋅ π
10
10
7
7
7
7
12
12
ω
ω
PWM
PWM
V
V
S
S
p
p
V
V
45
45
 
 
,
,
FB
FB
10
10
1 ( )
1 ( )
O
O
3
3
2
2
n
n
,
,
G
G
28
28
80
80
pF
pF
)
)
3
3
1
1
nF
nF
1 (
1 (
=
=
 
 
CA
CA
1
1
3
3
1
1
+
+
The block diagram in Figure 7 shows the control loops of a
buck converter with the SC4524C. The inner loop (current
loop) consists of a current sensing resistor (R
a current amplifier (CA) with gain (G
loop (voltage loop) consists of an error amplifier (EA), a
PWM modulator, and a LC filter.
Since the current loop is internally closed, the remaining
task for the loop compensation is to design the voltage
compensator (C
For a converter with switching frequency F
inductance L
control (V
given by:
This transfer function has a finite DC gain
an ESR zero F
a dominant low-frequency pole F
and double poles at half the switching frequency.
Including the voltage divider (R
feedback transfer function is found and plotted in Figure
8 as the converter gain.
Since the converter gain has only one dominant pole at
low frequency, a simple Type-2 compensation network
is sufficient for voltage loop compensation. As shown in
Figure 8, the voltage compensator has a low frequency
integrator pole, a zero at F
at F
frequency. The zero is introduced to compensate the
excessive phase lag at the loop gain crossover due to the
22
22
22
22
R
R
+
+
10
10
6
6
/ s
/ s
22
22
S
S
1 .
1 .
R s
R s
.
.
1 .
1 .
1
1
1
1
k 3
k 3
P1
ω
ω
3
3
1 .
1 .
2
2
ESR
ESR
. The integrator is used to boost the gain at low
R
R
R
R
n
n
R
R
C
C
C
C
C
C
C
C
10
10
G
G
G
G
R
R
ω
ω
C
C
C
C
C
C
C
C
A
A
A
A
A
A
A
A
ω
ω
V
V
V
V
V
V
V
V
10
10
π
π
22
22
Q
Q
7
7
7
7
o
o
o
o
c
c
PWM
PWM
PWM
PWM
7
7
7
7
C
C
C
C
C
C
C
C
5
5
5
5
8
8
8
8
c
c
Z
Z
5
5
5
5
8
8
8
8
p
p
F
F
10
10
C
C
1
1
+
+
C
C
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
3
3
=
=
C
O
O
3
3
C
C
) to output (V
s
s
)
)
10
10
3
3
. 0
. 0
1 (
1 (
10
10
10
10
R
R
. 0
. 0
1 (
1 (
R
R
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
=
=
O
O
2
2
g
g
g
g
1
1
⋅ π
⋅ π
ESR
ESR
C
C
⋅ π
⋅ π
1
=
=
Z
2
2
π
π
20
20
20
20
28
28
⋅ π
⋅ π
⋅ π
⋅ π
π
π
π
π
π
π
20
20
20
20
28
28
. 0
. 0
/
/
, output capacitance C
G
G
G
G
+
+
+
+
m
m
m
m
10
10
10
10
1
1
A
A
at
O
O
⋅ π
⋅ π
A
A
20
20
20
20
F
F
F
F
F
F
F
F
12
12
ω
ω
V
V
6
6
C
C
C
C
V
V
CA
CA
CA
CA
1
1
1
1
16
16
600
600
45
45
1
1
1
1
16
16
600
600
/ s
/ s
/ s
/ s
C
C
1 Z
1 Z
P
P
5
1 Z
1 Z
P
P
,
,
FB
FB
, R
2
2
n
n
1
1
1
1
O
O
R
R
R
R
15
15
O
O
15
15
80
80
log
log
log
log
log
log
log
log
10
10
10
10
pF
pF
20
20
20
20
)
)
1
1
R
R
R
R
R
R
R
R
3
3
nF
nF
G
G
G
G
9 .
9 .
9 .
9 .
R
R
R
R
12
12
12
12
ω
ω
ω
ω
 
 
7
,
,
0 .
0 .
3 .
3 .
, and C
10
10
7
7
7
7
7
7
10
10
7
7
PWM
PWM
PWM
PWM
S
S
p
p
S
S
p
p
 
 
 
 
10
10
10
10
10
10
1 ( )
1 ( )
1 ( )
1 ( )
3
3
,
,
3
3
,
,
G
G
28
28
G
G
28
28
3
3
3
3
1
1
1
1
1 (
1 (
=
=
=
=
=
=
1 (
1 (
CA
CA
CA
CA
1
1
1
1
1
1
3
3
3
3
1
1
1
1
3
3
O
+
+
+
+
15
15
22
22
22
22
22
22
22
22
R
R
) transfer function in Figure 7 is
R
R
+
+
+
+
ω
ω
6
6
6
6
/ s
/ s
8
/ s
/ s
22
22
22
22
S
S
).
22
22
S
S
Z1
1 .
1 .
1 .
1 .
R s
R s
R s
R s
Z
Z
9 .
9 .
.
.
1 .
1 .
1
1
.
.
1 .
1 .
1
1
, and a high frequency pole
k 3
k 3
k 3
k 3
ω
ω
ω
ω
=
=
1 .
1 .
1 .
1 .
dB
dB
2
2
2
2
ESR
ESR
ESR
ESR
n
n
n
n
10
10
10
10
10
10
ω
ω
ω
ω
R
R
π
π
π
π
10
10
10
10
Q
Q
Q
Q
4
p
p
F
F
F
F
10
10
p
p
10
10
ESR
ESR
C
C
C
C
P
1
1
1
1
+
+
+
+
C
C
C
C
1
1
and R
3
3
3
3
at
O
O
O
O
3
3
3
3
C
C
C
C
6
6
s
s
C
C
s
s
)
)
3
3
3
3
)
)
R
R
R
R
=
=
=
=
O
O
O
O
O
2
2
2
2
O
O
1
1
CA
1
1
C
C
C
C
=
=
2
2
2
2
1
1
=
=
3
3
. 0
. 0
. 0
. 0
and loading R, the
/
/
/
/
,
,
O
O
⋅ π
⋅ π
O
O
=18.5). The outer
⋅ π
⋅ π
0 .
0 .
12
12
12
12
3 .
3 .
ω
ω
V
V
V
V
ω
ω
6
V
V
V
V
45
45
45
45
,
,
,
,
), the control to
FB
FB
FB
FB
2
2
n
n
n
n
SC4524C
O
O
O
O
2
2
80
80
80
80
pF
pF
pF
pF
)
)
)
)
nF
nF
nF
nF
s
=
=
 
 
 
 
=5.5mW) and
15
15
10
10
10
10
SW
(8)
9 .
9 .
, output
1
1
1
1
3
3
3
3
dB
dB
ω
ω
ω
ω
22
22
22
22
Z
Z
Z
Z
=
=
=
=
13
10
10
10
10
R
R
R
R
ESR
ESR
ESR
ESR
1
1
1
1
6
6
6
6
C
C
C
C
O
O
O
O
1
1
1
1
. 3
. 3
3
3
,
,
,
,
0 .
0 .
0 .
0 .
3 .
3 .

Related parts for SC4524CSETRT