SC4525CSETRT Semtech, SC4525CSETRT Datasheet - Page 13

no-image

SC4525CSETRT

Manufacturer Part Number
SC4525CSETRT
Description
IC BUCK ADJ 3A 8SOIC
Manufacturer
Semtech
Series
-r
Type
Step-Down (Buck), PWM - Current Moder
Datasheet

Specifications of SC4525CSETRT

Internal Switch(s)
Yes
Synchronous Rectifier
No
Number Of Outputs
1
Voltage - Output
1 V ~ 26.88 V
Current - Output
3A
Frequency - Switching
300kHz ~ 1.3MHz
Voltage - Input
3 V ~ 28 V
Operating Temperature
-40°C ~ 105°C
Mounting Type
Surface Mount
Package / Case
8-SOIC (0.154", 3.90mm Width) Exposed Pad
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
SC4525CSETR

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
SC4525CSETRT
Manufacturer:
OHMITE
Quantity:
440 000
Part Number:
SC4525CSETRT
Manufacturer:
SEMTECH
Quantity:
2 832
Part Number:
SC4525CSETRT
Manufacturer:
SEMTECH/美国升特
Quantity:
20 000
D
D
C
C
O
O
20
20
+
+
D ⋅
D ⋅
O
O
=
=
I
I
1
1
V
V
O
O
L
L
+
+
V
V
O
O
V
V
0 .
0 .
+
+
I
I
%
%
 
 
V
V
D
D
O
O
F
F
V
V
O
O
I
I
+
+
 
 
Applications Information (Cont.)
Figure 6(b) and (c). Methods of Bootstrapping the
SC4525C
Loop Compensation
The goal of compensation is to shape the frequency
response of the converter so as to achieve high DC
accuracy and fast transient response while maintaining
loop stability.
IN
IN
D
D
O
O
V
V
SW
SW
V
V
ESR
ESR
I
I
D
D
V
V
)
)
O
O
V
V
D
D
)
)
F
F
D
D
1 (
1 (
CESAT
CESAT
FB
FB
1
1
L
L
F
F
SW
SW
1 (
1 (
1
1
SW
SW
+
+
1 (
1 (
VIN
VIN
REF
REF
) D
) D
8
8
Figure 7. Block diagram of control loops
) D
) D
F
F
+
+
) D
) D
-
-
CONTROLLER AND SCHOTTKY DIODE
CONTROLLER AND SCHOTTKY DIODE
SW
SW
1
1
EA
EA
R
R
R
R
D3
D3
D4 is either a pn juntion diode or a Schottky diode
D
D
D
D
L
L
L
L
I
I
I
I
C
C
D
D
D
D
D
D
D
D
C
C
C5
C5
R7
R7
RMS
RMS
RMS
RMS
4
4
4
4
1
1
1
1
I
I
V
V
I
I
V
V
IN
IN
IN
IN
IN
C
C
=
=
=
=
IN
L
L
L
L
depending on the operating temperature.
=
=
=
=
O
O
O
O
=
=
=
=
SC4525C
O
O
COMP
COMP
=
=
=
=
_
_
_
_
>
>
>
>
V
V
V
V
R
R
R
R
SC4525C
=
=
=
=
CIN
CIN
CIN
CIN
D1
D1
V (
V (
V (
V (
 
 
Vramp
Vramp
IN
IN
IN
IN
Vc
Vc
6
6
6
6
V (
V (
V (
V (
GND
4
4
4
4
BST
BST
D
D
D
D
GND
O
O
20
20
20
20
O
O
+
+
+
+
D ⋅
D ⋅
D ⋅
D ⋅
O
O
O
O
=
=
=
=
I
I
I
I
1
1
1
1
V
V
V
V
L
L
L
L
+
+
+
+
V
V
R
R
C
C
C
C
G
G
R
R
C8
C8
A
A
V
V
A
A
C
C
C
C
O
O
CA
CA
O
O
V
V
V
V
V
V
V
V
0 .
0 .
+
+
I
I
MODULATOR
MODULATOR
0 .
0 .
+
+
%
%
%
%
I
I
V
V
D
D
D
D
O
O
O
O
V
V
F
F
F
F
SW
V
V
V
V
7
7
7
7
O
O
5
5
o
o
c
c
PWM
PWM
5
5
O
O
C
C
C
C
8
8
8
8
SW
I
I
I
I
+
+
+
+
 
 
 
 
IN
IN
IN
IN
O
O
PWM
PWM
V
V
V
V
SW
SW
SW
SW
D
D
D
D
O
O
V
V
V
V
(C)
ESR
ESR
ESR
ESR
=
=
(b)
(b)
=
=
=
=
=
=
=
=
I
I
I
I
=
=
=
=
=
=
=
=
D
D
V
V
D
D
)
)
)
)
V
V
O
O
O
O
V
V
V
V
D
D
D
D
)
)
)
)
10
10
. 0
. 0
1 (
1 (
F
F
F
F
2
2
D
D
2
2
1 (
1 (
D
D
2
2
2
2
1 (
1 (
Rs
Rs
CESAT
CESAT
CESAT
CESAT
1
1
1
1
L
L
L
L
F
F
F
F
g
g
SW
SW
SW
SW
⋅ π
⋅ π
1 (
1 (
1 (
1 (
π
π
20
20
20
20
28
28
⋅ π
⋅ π
π
π
D4
1
1
SW
SW
SW
SW
+
+
1
1
+
+
+
+
G
G
m
m
10
10
1 (
1 (
1 (
1 (
A
A
20
20
F
F
F
F
C
C
CA
CA
1
1
1
1
Io
Io
16
16
600
600
) D
) D
/ s
/ s
1 Z
1 Z
P
P
) D
) D
D2
8
8
8
8
D 2
D 2
1
1
R
R
15
15
) D
) D
) D
) D
log
log
log
log
10
10
20
20
R
R
R
R
C1
G
G
9 .
9 .
F
F
F
F
R
R
) D
) D
) D
) D
ω
ω
C1
SW
SW
10
10
7
7
7
7
SW
SW
SW
SW
PWM
PWM
S
S
p
p
D1
1
1
1
1
 
 
10
10
1 ( )
1 ( )
3
3
,
,
G
G
28
28
3
3
1
1
1 (
1 (
CA
CA
=
=
1
1
C
C
C
C
3
3
1
1
+
+
22
22
22
22
O
O
O
O
L1
L1
R
R
+
+
R
R
R
R
C
C
C
C
G
G
C
C
C
C
6
6
A
A
A
A
/ s
/ s
V
V
V
V
22
22
VOUT>8V
 
 
 
 
Co
Co
Resr
Resr
S
S
1 .
1 .
7
7
o
o
c
c
PWM
PWM
7
7
C
C
C
C
5
5
R s
R s
8
8
5
5
8
8
VOUT
.
.
1 .
1 .
1
1
k 3
k 3
ω
ω
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
1 .
1 .
2
2
ESR
ESR
n
n
10
10
ω
ω
10
10
. 0
. 0
1 (
1 (
10
10
π
π
2
2
2
2
2
2
2
2
Q
Q
g
g
F
F
p
p
10
10
⋅ π
⋅ π
C
C
π
π
1
1
20
20
20
20
28
28
⋅ π
⋅ π
π
π
G
G
+
+
+
+
m
m
C
C
10
10
A
A
3
3
20
20
F
F
F
F
O
O
3
3
C
C
C
C
Vo
Vo
CA
CA
1
1
1
1
16
16
600
600
s
s
/ s
/ s
1 Z
1 Z
P
P
3
3
)
)
R4
R4
R6
R6
R
R
=
=
1
1
O
O
R
R
2
2
15
15
log
log
log
log
10
10
20
20
1
1
C
C
2
2
=
=
R
R
R
R
. 0
. 0
G
G
9 .
9 .
/
/
R
R
ω
ω
O
O
⋅ π
⋅ π
10
10
7
7
7
7
12
12
ω
ω
PWM
PWM
V
V
S
S
p
p
V
V
45
45
 
 
,
,
FB
FB
10
10
1 ( )
1 ( )
O
O
3
3
2
2
n
n
,
,
G
G
28
28
80
80
pF
pF
)
)
3
3
1
1
nF
nF
1 (
1 (
=
=
 
 
CA
CA
1
1
3
3
1
1
+
+
The block diagram in Figure 7 shows the control loops of a
buck converter with the SC4525C. The inner loop (current
loop) consists of a current sensing resistor (R
and a current amplifier (CA) with gain (G
outer loop (voltage loop) consists of an error amplifier
(EA), a PWM modulator, and a LC filter.
Since the current loop is internally closed, the remaining
task for the loop compensation is to design the voltage
compensator (C
For a converter with switching frequency F
inductance L
control (V
given by:
This transfer function has a finite DC gain
an ESR zero F
a dominant low-frequency pole F
and double poles at half the switching frequency.
Including the voltage divider (R
feedback transfer function is found and plotted in Figure
8 as the converter gain.
Since the converter gain has only one dominant pole at
low frequency, a simple Type-2 compensation network
is sufficient for voltage loop compensation. As shown in
Figure 8, the voltage compensator has a low frequency
integrator pole, a zero at F
at F
frequency. The zero is introduced to compensate the
excessive phase lag at the loop gain crossover due to the
integrator pole (-90deg) and the dominant pole (-90deg).
22
22
22
22
R
R
+
+
10
10
6
6
/ s
/ s
22
22
S
S
1 .
1 .
R s
R s
.
.
1 .
1 .
1
1
1
1
k 3
k 3
P1
ω
ω
3
3
1 .
1 .
2
2
ESR
ESR
. The integrator is used to boost the gain at low
R
R
R
R
n
n
R
R
C
C
C
C
C
C
C
C
10
10
G
G
G
G
R
R
ω
ω
C
C
C
C
C
C
C
C
A
A
A
A
A
A
A
A
ω
ω
V
V
V
V
V
V
V
V
10
10
π
π
22
22
Q
Q
7
7
7
7
o
o
o
o
c
c
PWM
PWM
PWM
PWM
7
7
7
7
C
C
C
C
C
C
C
C
5
5
5
5
8
8
8
8
c
c
Z
Z
5
5
5
5
8
8
8
8
p
p
F
F
10
10
C
C
1
1
+
+
C
C
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
3
3
=
=
C
O
O
3
3
C
C
) to output (V
s
s
)
)
10
10
3
3
. 0
. 0
1 (
1 (
10
10
10
10
R
R
. 0
. 0
1 (
1 (
R
R
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
=
=
O
O
2
2
g
g
g
g
1
1
⋅ π
⋅ π
ESR
ESR
C
C
⋅ π
⋅ π
1
=
=
Z
2
2
π
π
20
20
20
20
28
28
⋅ π
⋅ π
⋅ π
⋅ π
π
π
π
π
π
π
20
20
20
20
28
28
. 0
. 0
/
/
, output capacitance C
G
G
G
G
+
+
+
+
m
m
m
m
10
10
10
10
1
1
A
A
at
O
O
⋅ π
⋅ π
A
A
20
20
20
20
F
F
F
F
F
F
F
F
12
12
ω
ω
V
V
6
6
C
C
C
C
V
V
CA
CA
CA
CA
1
1
1
1
16
16
600
600
45
45
1
1
1
1
16
16
600
600
/ s
/ s
/ s
/ s
C
C
1 Z
1 Z
P
P
5
1 Z
1 Z
P
P
,
,
FB
FB
, R
2
2
n
n
1
1
1
1
O
O
R
R
R
R
15
15
O
O
15
15
80
80
log
log
log
log
log
log
log
log
10
10
10
10
pF
pF
20
20
20
20
)
)
1
1
R
R
R
R
R
R
R
R
3
3
nF
nF
G
G
G
G
9 .
9 .
9 .
9 .
R
R
R
R
12
12
12
12
ω
ω
ω
ω
 
 
7
,
,
0 .
0 .
3 .
3 .
, and C
10
10
7
7
7
7
7
7
10
10
7
7
PWM
PWM
PWM
PWM
S
S
p
p
S
S
p
p
 
 
 
 
10
10
10
10
10
10
1 ( )
1 ( )
1 ( )
1 ( )
3
3
,
,
3
3
,
,
G
G
28
28
G
G
28
28
3
3
3
3
1
1
1
1
1 (
1 (
=
=
=
=
=
=
1 (
1 (
CA
CA
CA
CA
1
1
1
1
1
1
3
3
3
3
1
1
1
1
3
3
O
+
+
+
+
15
15
22
22
22
22
22
22
22
22
R
R
) transfer function in Figure 7 is
R
R
+
+
+
+
ω
ω
6
6
6
6
/ s
/ s
8
/ s
/ s
22
22
22
22
S
S
).
22
22
S
S
Z1
1 .
1 .
1 .
1 .
R s
R s
R s
R s
Z
Z
9 .
9 .
.
.
1 .
1 .
1
1
.
.
1 .
1 .
1
1
, and a high frequency pole
k 3
k 3
k 3
k 3
ω
ω
ω
ω
=
=
1 .
1 .
1 .
1 .
dB
dB
2
2
2
2
ESR
ESR
ESR
ESR
n
n
n
n
10
10
10
10
10
10
ω
ω
ω
ω
R
R
π
π
π
π
10
10
10
10
Q
Q
Q
Q
4
p
p
F
F
F
F
10
10
p
p
10
10
ESR
ESR
C
C
C
C
P
1
1
1
1
+
+
+
+
C
C
C
C
1
1
and R
3
3
3
3
at
O
O
O
O
3
3
3
3
C
C
C
C
6
6
s
s
C
C
s
s
)
)
3
3
3
3
)
)
R
R
R
R
=
=
=
=
O
O
O
O
O
2
2
2
2
O
O
1
1
1
1
C
C
C
C
=
=
2
2
2
2
1
1
=
=
3
3
. 0
. 0
. 0
. 0
and loading R, the
/
/
/
/
,
,
O
O
⋅ π
⋅ π
O
O
⋅ π
⋅ π
0 .
0 .
12
12
12
12
3 .
3 .
ω
ω
V
V
V
V
ω
ω
6
V
V
V
V
45
45
45
45
,
,
,
,
), the control to
FB
FB
FB
FB
2
2
n
n
n
n
SC4525C
O
O
O
O
2
2
80
80
80
80
pF
pF
pF
pF
)
)
)
)
nF
nF
nF
nF
=
=
 
 
 
 
CA
15
15
=18.5). The
10
10
10
10
s
SW
=3.53mW)
(8)
9 .
9 .
, output
1
1
1
1
3
3
3
3
dB
dB
ω
ω
ω
ω
22
22
22
22
Z
Z
Z
Z
=
=
=
=
13
10
10
10
10
R
R
R
R
ESR
ESR
ESR
ESR
1
1
1
1
6
6
6
6
C
C
C
C
O
O
O
O
1
1
1
1
. 3
. 3
3
3
,
,
,
,
0 .
0 .
0 .
0 .
3 .
3 .

Related parts for SC4525CSETRT