MC68HC705C8ACS

Manufacturer Part NumberMC68HC705C8ACS
ManufacturerFreescale Semiconductor, Inc
MC68HC705C8ACS datasheet
 


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
Page 121
122
Page 122
123
Page 123
124
Page 124
125
Page 125
126
Page 126
127
Page 127
128
Page 128
129
Page 129
130
Page 130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
Page 126/222:

Serial Communications Interface (SCI)

Download datasheet (3Mb)Embed
PrevNext
Freescale Semiconductor, Inc.

Serial Communications Interface (SCI)

Technical Data
126
Break Characters — Writing a logic 1 to the SBK bit in SCCR2
loads the shift register with a break character. A break character
contains all logic 0s and has no start and stop bits. Break
character length depends on the M bit in SCCR1. As long as SBK
is at logic 1, transmitter logic continuously loads break characters
into the shift register. After software clears the SBK bit, the shift
register finishes transmitting the last break character and then
transmits at least one logic 1. The automatic logic 1 at the end of
a break character is to guarantee the recognition of the start bit of
the next character.
Idle Characters — An idle character contains all logic 1s and has
no start or stop bits. Idle character length depends on the M bit in
SCCR1. The preamble is a synchronizing idle character that
begins every transmission.
Clearing the TE bit during a transmission relinquishes the
PD1/TDO pin after the last character to be transmitted is shifted
out. The last character may already be in the shift register, or
waiting in the SCDR, or it may be a break character generated by
writing to the SBK bit. Toggling TE from logic 0 to logic 1 while the
last character is in transmission generates an idle character (a
preamble) that allows the receiver to maintain control of the
PD1/TDO pin.
Transmitter Interrupts — These sources can generate SCI
transmitter interrupt requests:
– Transmit Data Register Empty (TDRE) — The TDRE bit in the
SCSR indicates that the SCDR has transferred a character to
the transmit shift register. TDRE is a source of SCI interrupt
requests. The transmission complete interrupt enable bit
(TCIE) in SCCR2 is the local mask for TDRE interrupts.
– Transmission Complete (TC) — The TC bit in the SCSR
indicates that both the transmit shift register and the SCDR are
empty and that no break or idle character has been generated.
TC is a source of SCI interrupt requests. The transmission
complete interrupt enable bit (TCIE) in SCCR2 is the local
mask for TC interrupts.

Serial Communications Interface (SCI)

For More Information On This Product,
Go to: www.freescale.com
MC68HC705C8A — Rev. 3