SAF7118EH NXP Semiconductors, SAF7118EH Datasheet

no-image

SAF7118EH

Manufacturer Part Number
SAF7118EH
Description
Manufacturer
NXP Semiconductors
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
SAF7118EH
Manufacturer:
PHILIPS
Quantity:
252
Part Number:
SAF7118EH/V1
Manufacturer:
INFINEON
Quantity:
101
Part Number:
SAF7118EH/V1/G,518
Manufacturer:
NXP Semiconductors
Quantity:
10 000
Part Number:
SAF7118EH/V1/G,557
Manufacturer:
FREESCALE
Quantity:
101
Part Number:
SAF7118EH/V1/G,557
Manufacturer:
NXP Semiconductors
Quantity:
10 000
1. General description
The SAF7118 is a video capture device for applications at the image port of Video
Graphics Array (VGA) controllers.
Philips X-VIP is a new multistandard comb filter video decoder chip with additional
component processing, providing high quality, optionally scaled and video.
The SAF7118 is a combination of a four-channel analog preprocessing circuit including
source selection, anti-aliasing filter and Analog-to-Digital Converter (ADC) with
succeeding decimation filters from 27 MHz to 13.5 MHz data rate. Each preprocessing
channel comes with an automatic clamp and gain control. The SAF7118 combines a
Clock Generation Circuit (CGC), a digital multistandard decoder containing
two-dimensional chrominance/luminance separation by an adaptive comb filter and a high
performance scaler, including variable horizontal and vertical up and downscaling and a
brightness, contrast and saturation control circuit.
It is a highly integrated circuit for desktop video and similar applications. The decoder is
based on the principle of line-locked clock decoding and is able to decode the color of
PAL, SECAM and NTSC signals into ITU 601 compatible color component values. The
SAF7118 accepts CVBS or S-video (Y/C) as analog inputs from TV or VCR sources,
including weak and distorted signals as well as baseband component signals Y-P
RGB. An expansion port (X port) for digital video (bidirectional half duplex, D1 compatible)
is also supported to connect to MPEG or a video phone codec. At the so called image port
(I port) the SAF7118 supports 8-bit or 16-bit wide output data with auxiliary reference data
for interfacing to VGA controllers.
The target application for the SAF7118 is to capture and scale video images, to be
provided as a digital video stream through the image port of a VGA controller, for capture
to system memory, or just to provide digital baseband video to any picture improvement
processing.
The SAF7118 also provides a means for capturing the serially coded data in the Vertical
Blanking Interval (VBI) data. Two principal functions are available:
The SAF7118 also incorporates field-locked audio clock generation. This function ensures
that there is always the same number of audio samples associated with a field, or a set of
fields. This prevents the loss of synchronization between video and audio during capture
or playback.
1. To capture raw video samples, after interpolation to the required output data rate, via
2. A versatile data slicer (data recovery) unit
SAF7118
Multistandard video decoder with adaptive comb filter and
component video input
Rev. 03 — 16 February 2006
the scaler
Product data sheet
B
-P
R
or

Related parts for SAF7118EH

SAF7118EH Summary of contents

Page 1

SAF7118 Multistandard video decoder with adaptive comb filter and component video input Rev. 03 — 16 February 2006 1. General description The SAF7118 is a video capture device for applications at the image port of Video Graphics Array (VGA) controllers. ...

Page 2

Philips Semiconductors All of the ADCs may be used to digitize a VSB signal for subsequent decoding; a dedicated output port and a selectable VSB clock input is provided. The circuit is I rate up to 400 kbit/s). 2. Features ...

Page 3

Philips Semiconductors 2.3 Component video processing RGB component inputs Y-P B Fast blanking between CVBS and synchronous component inputs Digital RGB to Y-C 2.4 Video scaler Horizontal and vertical downscaling and upscaling to randomly sized windows Horizontal and vertical scaling ...

Page 4

Philips Semiconductors Scaled 8-bit luminance only and raw CVBS data output Sliced, decoded VBI data output 2.8 Miscellaneous Power-on control 5 V tolerant digital inputs and I/O ports Software controlled power saving standby modes supported Programming via serial I up ...

Page 5

... Ordering information Table 2: Ordering information Type number Package Name SAF7118EH HBGA156 SAF7118H QFP160 SAF7118_3 Product data sheet Multistandard video decoder with adaptive comb filter Conditions component mode Description plastic thermal enhanced ball grid array package; 156 balls; ...

Page 6

ADP [ 8:0 ] RES CLKEXT CE DNC0 to DNC5 CONTROL AD PORT FSW AI11 FAST SWITCH DELAY ANALOG1 AI12 R AI13 ADC1 G AI14 COMPONENTS DF PROCESSING AI1D B RAW AI21 ANALOG2 AI22 ADC2 AI23 C CROMINANCE AI24 PROCESSING ...

Page 7

... G14 IPD0 H4 V DDA2 Rev. 03 — 16 February 2006 SAF7118 ball A1 index area SAF7118EH Transparent top view Pin Symbol Pin SS(xtal) A8 XPD0 A9 A12 TEST1 A13 TEST2 DD(xtal) B7 XDQ ...

Page 8

Philips Semiconductors Table 3: Pin Symbol H13 IPD4 J3 AI24 J13 IPD6 K3 AI1D K13 IGP1 L3 AI14 L7 ADP3 L11 V M1 AOUT M13 FSW N3 TEST15 N7 ADP5 N11 ASCLK P2 TEST18 P6 ADP8 ...

Page 9

Philips Semiconductors Table 4: Pin description …continued Symbol Pin QFP160 HBGA156 AI34 18 G1 AI21 SSA2 AI22 21 G3 AI2D 22 H1 AI23 DDA2 DDA2A AI24 26 ...

Page 10

Philips Semiconductors Table 4: Pin description …continued Symbol Pin QFP160 HBGA156 ADP4 57 P7 ADP3 DDD3 ADP2 60 M7 ADP1 61 P8 ADP0 SSD3 INT_A ...

Page 11

Philips Semiconductors Table 4: Pin description …continued Symbol Pin QFP160 HBGA156 IGP0 87 L14 V 88 L11 SSD5 IGP1 89 K13 IGPV 90 K14 IGPH 91 K12 IPD7 92 K11 IPD6 93 J13 IPD5 94 J14 V 95 J12 DDD6 ...

Page 12

Philips Semiconductors Table 4: Pin description …continued Symbol Pin QFP160 HBGA156 DNC7 117 B13 DNC8 118 B14 DNC11 119 C12 DNC12 120 C13 DNC21 121 - DNC22 122 - DNC3 123 A13 DNC4 124 B12 DNC5 125 A12 XTRI 126 ...

Page 13

Philips Semiconductors Table 4: Pin description …continued Symbol Pin QFP160 HBGA156 TDI 152 B5 V 153 D5 SSD13 V 154 A4 SS(xtal) XTALI 155 B4 XTALO 156 A3 V 157 B3 DD(xtal) XTOUT 158 A2 DNC9 159 C3 DNC10 160 ...

Page 14

Table 5: 8-bit/16-bit and alternative pin function configurations [1] Pin Symbol Input 8-bit input 16-bit input modes modes (only for I programming) C11, A11, B10, XPD7 to D1 data Y data input A10, B9, A9, B8, A8 XPD0 input (127, ...

Page 15

Table 5: 8-bit/16-bit and alternative pin function configurations [1] Pin Symbol Input 8-bit input 16-bit input modes modes (only for I programming) N12 (77) ITRDY - - K12 (91) IGPH - - K14 (90) IGPV - - K13 (89) IGP1 ...

Page 16

Philips Semiconductors 8. Functional description 8.1 Decoder 8.1.1 Analog input processing The SAF7118 offers sixteen analog signal inputs, four analog main channels with source switch, clamp circuit, analog amplifier, anti-alias filter and video 9-bit CMOS ADC with a Decimation Filter ...

Page 17

Philips Semiconductors AI44 AI43 SOURCE CLAMP AI42 SWITCH CIRCUIT AI41 AI4D AI34 AI33 SOURCE CLAMP AI32 SWITCH CIRCUIT AI31 AI3D AI24 AI23 SOURCE CLAMP AI22 SWITCH CIRCUIT AI21 AI2D AI14 AI13 CLAMP SOURCE AI12 SWITCH CIRCUIT AI11 AI1D MODE CLAMP ...

Page 18

Philips Semiconductors 8.1.1.2 Gain control The gain control circuit receives (via the I amplifiers or controls one of these amplifiers automatically via a built-in Automatic Gain Control (AGC) as part of the Analog Input Control (AICO). The AGC for luminance ...

Page 19

Philips Semiconductors Fig 9. Gain flow chart SAF7118_3 Product data sheet Multistandard video decoder with adaptive comb filter ANALOG INPUT AMPLIFIER ANTI-ALIAS FILTER ADC 1 NO ACTION VBLK 0 510 496 1/F ...

Page 20

Philips Semiconductors Fig 10. Clamp and gain flow chart SAF7118_3 Product data sheet Multistandard video decoder with adaptive comb filter ANALOG INPUT ADC 1 NO BLANKING ACTIVE VBLK <- CLAMP 1 0 HCL 1 0 CLL NO CLAMP CLAMP CLAMP ...

Page 21

CVBS-IN or Y-IN LDEL COMPENSATION YCOMB QUADRATURE MODULATOR CVBS-IN QUADRATURE LOW-PASS 1 or CHR-IN DEMODULATOR DOWNSAMPLING SUBCARRIER GENERATION 2 CHROMINANCE INCREMENT DELAY SUBCARRIER GENERATION 1 HUEC[7:0] RTCO Fig 11. Chrominance and luminance processing Y DELAY LUMINANCE-PEAKING SUBTRACTOR OR LOW-PASS, CHR ...

Page 22

Philips Semiconductors 8.1.2.1 Chrominance path The 9-bit CVBS or chrominance input signal is fed to the input of a quadrature demodulator, where it is multiplied by two time-multiplexed subcarrier signals from the subcarrier generation block 1 (0 and 90 phase ...

Page 23

Philips Semiconductors • Loop filter chrominance PLL (only active for PAL/NTSC standards) • PAL/SECAM sequence detection, H/2-switch generation The increment generation circuit produces the Discrete Time Oscillator (DTO) increment for both subcarrier generation blocks. It contains a division by the ...

Page 24

Philips Semiconductors (dB (1) LCBW[2:0] = 000. 48 (2) LCBW[2:0] = 010. 51 (3) LCBW[2:0] = 100. (4) LCBW[2:0] = 110. 54 ...

Page 25

Philips Semiconductors (dB (1) LCBW[2:0] = 000. 48 (2) LCBW[2:0] = 010. 51 (3) LCBW[2:0] = 100. (4) LCBW[2:0] = 110. 54 ...

Page 26

Philips Semiconductors 8.1.2.2 Luminance path The rejection of the chrominance components within the 9-bit CVBS or Y input signal is achieved by subtracting the remodulated chrominance signal from the CVBS input. The comb filtered C 3 block. Its characteristic is ...

Page 27

Philips Semiconductors (dB (1) LCBW[2:0] = 000. 48 (2) LCBW[2:0] = 010. 51 (3) LCBW[2:0] = 100. (4) LCBW[2:0] = 110. 54 ...

Page 28

Philips Semiconductors (dB (1) LCBW[2:0] = 000. 48 (2) LCBW[2:0] = 010. 51 (3) LCBW[2:0] = 100. (4) LCBW[2:0] = 110. 54 ...

Page 29

Philips Semiconductors (dB (1) LCBW[2:0] = 000. 48 (2) LCBW[2:0] = 010. 51 (3) LCBW[2:0] = 100. (4) LCBW[2:0] = 110. 54 ...

Page 30

Philips Semiconductors (dB (1) LCBW[2:0] = 000. 48 (2) LCBW[2:0] = 010. 51 (3) LCBW[2:0] = 100. (4) LCBW[2:0] = 110. 54 ...

Page 31

Philips Semiconductors 9 V (dB (1) LUFI[3:0] = 0001. 2 (2) LUFI[3:0] = 0010. (3) LUFI[3:0] = 0011. (4) LUFI[3:0] = 0100. 1 (5) LUFI[3:0] = 0101. (6) LUFI[3:0] = 0110. (7) LUFI[3:0] = ...

Page 32

Philips Semiconductors 8.1.2.3 Brightness Contrast Saturation (BCS) control and decoder output levels The resulting Y (CVBS) and C following functions: • Chrominance saturation control by DSAT7 to DSAT0 • Luminance contrast and brightness control by DCON7 to DCON0 and DBRI7 ...

Page 33

Philips Semiconductors a. Sources containing 7.5 IRE black level Fig 20. CVBS (raw data) range for scaler input, data slicer and X port output 8.1.3 Synchronization The prefiltered luminance signal is fed to the synchronization stage. Its bandwidth is further ...

Page 34

Philips Semiconductors Table 6: Clock XTALO LLC LLC2 LLC4 (internal) LLC8 (virtual) LFCO Fig 21. Block diagram of the clock generation circuit 8.1.5 Power-on reset and CE input A missing clock, insufficient digital or analog V the reset sequence; all ...

Page 35

Philips Semiconductors CE XTALO LLCINT RESINT LLC RES (internal reset) some ms POC = Power-on control CE = chip enable input XTALO = crystal oscillator output LLCINT = internal system clock RESINT = internal reset LLC = line-locked clock output ...

Page 36

Philips Semiconductors 8.2 Component video processing Fig 23. Component video processing 8.2.1 RGB-to-(Y-C The matrix converts the RGB signals from the analog-to-digital converters/downsamplers to the Y-C has a gain factor of 1. The block provides a delay compensated bypass for ...

Page 37

Philips Semiconductors Fig 24. Downformatter block diagram Fig 25. C SAF7118_3 Product data sheet Multistandard video decoder with adaptive comb filter LOW-PASS LOW-PASS C B switch HIGH-PASS Y bypass CMFI 4 Z (dB ...

Page 38

Philips Semiconductors Fig 26. Y high-pass filter frequency response 8.2.3 Component video BCS control The resulting Y and C contains the following functions: • Chrominance saturation control by CSAT7 to CSAT0 • Luminance contrast and brightness control by CCON7 to ...

Page 39

Philips Semiconductors 255 white 235 128 LUMINANCE 100 % 16 black 0 001aac241 “ITU Recommendation 601/656” digital levels with default CBCS (decoder) settings CCON[7:0] = 44h, CBRI[7:0] = 80h and CSAT[7:0] = 40h. Equations for modification to the Y-C Y ...

Page 40

Philips Semiconductors Table 7: Data type number Data type SAF7118_3 Product data sheet Multistandard video decoder with adaptive comb filter Data formats at decoder ...

Page 41

LINE NUMBER (1st FIELD) active video 259 260 261 LINE NUMBER (2nd FIELD) active video LCR LINE NUMBER (1st FIELD) 273 274 275 276 LINE NUMBER (2nd FIELD) LCR ...

Page 42

Philips Semiconductors ITU counting 622 623 310 single field counting 309 CVBS HREF F_ITU656 (1) V123 VSTO [ 8 134h VGATE FID ITU counting 309 310 single field counting 310 309 CVBS HREF F_ITU656 (1) V123 VSTO [ ...

Page 43

Philips Semiconductors ITU counting 525 single field counting 262 CVBS HREF F_ITU656 (1) V123 VSTO [ 8 101h VGATE FID ITU counting 263 262 single field counting 262 263 CVBS HREF F_ITU656 (1) V123 VSTO [ 8:0 ] ...

Page 44

Philips Semiconductors Fig 32. Horizontal timing diagram (50/60 Hz) 8.4 Scaler The High Performance video Scaler (HPS) is based on the system as implemented in previous products, but with some aspects enhanced. Vertical upsampling is supported and the processing pipeline ...

Page 45

Philips Semiconductors The flow is controlled by internal data valid and data request flags (internal handshake signalling) between the sub-blocks; therefore the entire scaler acts as a pipeline buffer. Depending on the actual programmed scaling parameters the effective buffer can ...

Page 46

Philips Semiconductors The video scaler receives its input signal from the video decoder or from the expansion port (X port). It gets 16-bit Y-C from the decoder. Discontinuous data stream can be accepted from the expansion port (X port), normally ...

Page 47

Philips Semiconductors • Vertical length defined in number of target lines result of vertical scaling, parameter YD[11:0] 9Fh[3:0] 9Eh[7:0] • Horizontal offset defined in number of pixels of the video source, parameter XO[11:0] 95h[3:0] 94h[7:0] • Horizontal length ...

Page 48

Philips Semiconductors Table 9: XDV1 92h[ 8.4.1.2 Task handling The task handler controls the switching between the two programming register sets controlled by subaddresses 90h and C0h. A task is enabled via the global control ...

Page 49

Philips Semiconductors • Basically the trigger conditions are checked, when a task is activated important to realize, that they are not checked while a task is inactive. So you can not trigger to next logic 0 or logic ...

Page 50

Table 10: Examples for field processing Subject Field sequence frame/field [1] Example 1 Example 2 1/1 1/2 2/1 1/1 Processed by task State of detected ITU 656 FID TOGGLE fl ...

Page 51

Philips Semiconductors 8.4.2 Horizontal scaling The overall horizontal required scaling factor has to be split into a binary and a rational value according to the equation: H-scale ratio H-scale ratio where the parameter of prescaler XPSC[5: ...

Page 52

Philips Semiconductors Where: • The range (value 0 is not allowed) • Npix_in = number of input pixel, and • Npix_out = number of desired output pixel over the complete horizontal scaler The use of the ...

Page 53

Philips Semiconductors Fade-in and fade-out of the filters is achieved by copying an original source sample each as first and last pixel after prescaling. Figure 33 Table 11: PFUV[1:0] A2h[7:6] and PFY[1:0] A2h[5: (1) PFY[1:0] = ...

Page 54

Philips Semiconductors (dB 0. XC2_1 = 0; Zero’s at Fig 35. Examples for prescaler filter characteristics: effect of ...

Page 55

Philips Semiconductors Table 12: XACL[5:0] example of usage Prescale XPSC Recommended values ratio [5:0] For lower bandwidth requirements XACL[5: ...

Page 56

Philips Semiconductors Luminance and chrominance scale increments (XSCY[12:0] A9h[4:0] A8h[7:0] and XSCC[12:0] ADh[4:0] ACh[7:0]) are defined independently, but must be set relationship in the actual data path implementation. The phase offsets XPHY[7:0] AAh[7:0] and XPHC[7:0] ...

Page 57

Philips Semiconductors 8.4.3.2 Vertical scaler (subaddresses B0h to BFh and E0h to EFh) Vertical scaling of any ratio from 64 (theoretical zoom) to The vertical scaling block consists of another line delay, and the vertical filter structure, that can operate ...

Page 58

Philips Semiconductors 8.4.3.3 Use of the vertical phase offsets As described in interlaced input sequence. Additionally the interpretation and timing between ITU 656 field ID and real-time detection by means of the state of H-sync at the falling edge of ...

Page 59

Philips Semiconductors Fig 38. Derivation of the phase related equations (example: interlace vertical scaling In Table 13 It should be noted that the equations of the unscaled case, as the geometrical reference position for all conversions is the position of ...

Page 60

Philips Semiconductors Table 13: Input field under processing Upper input lines Upper input lines Lower input lines Lower input lines Table 14: Detected input field upper lines 0 = upper lines 1 = lower lines 1 = ...

Page 61

Philips Semiconductors 8.5 VBI data decoder and capture (subaddresses 40h to 7Fh) The SAF7118 contains a versatile VBI data decoder. The implementation and programming model is in accordance with the VBI data slicer built into the multimedia video data acquisition ...

Page 62

Philips Semiconductors Table 15: DT[3:0] 62h[3:0] 1101 1110 1111 8.6 Image port output formatter (subaddresses 84h to 87h) The output interface consists of a FIFO for video and for sliced text data, an arbitration circuit, which controls the mixed transfer ...

Page 63

Philips Semiconductors 8.6.1 Scaler output formatter (subaddresses 93h and C3h) The output formatter organizes the packing into the output FIFO. The following formats are available: Y-C Y only (e.g. for raw samples). The formatting is controlled by FSI[2:0] 93h[2:0], FOI[1:0] ...

Page 64

Philips Semiconductors These are: • The FIFO Almost Empty (FAE) flag • The FIFO Combined Flag (FCF) or FIFO filled, which is set at almost full level and reset, with hysteresis, only after the level crosses below the almost empty ...

Page 65

Philips Semiconductors 8.6.5 Data stream coding and reference signal generation (subaddresses 84h, 85h and 93h and V reference signals are logic 1, active gate signals are generated, which frame the transfer of the valid output data ...

Page 66

VBI line timing reference code ... SAV SDID DC ... EAV ANC header DID SDID DC ANC header active for DID (subaddress 5Dh) ...

Page 67

Philips Semiconductors Table 21: Bytes stream of the data slicer Nick Comment name DID, subaddress 5Dh = 00h SAV, subaddress 5Dh EAV subaddress 5Dh [ 3Eh subaddress 5Dh [ 3Fh SDID programmable via ...

Page 68

Philips Semiconductors 8.7.1 Master audio clock The audio clock is synthesized from the same crystal frequency as the line-locked video clock is generated. The master audio clock is defined by the parameters: • Audio master Clocks Per Field, ACPF[17:0] 32h[1:0] ...

Page 69

Philips Semiconductors 8.7.2 Signals ASCLK and ALRCLK Two binary divided signals ASCLK and ALRCLK are provided for slower serial digital audio signal transmission and for channel-select. The frequencies of these signals are defined by the following parameters: • SDIV[5:0] 38h[5:0] ...

Page 70

Philips Semiconductors 9. Input/output interfaces and ports The SAF7118 has 5 different I/O interfaces: • Analog video input interface, for analog CVBS and/or Y and C input signals and/or component video signals • Audio clock port • Digital real-time signal ...

Page 71

Philips Semiconductors 9.2 Audio clock signals The SAF7118 also synchronizes the audio clock and sampling rate to the video frame rate, via a very slow PLL. This ensures that the multimedia capture and compression processes always gather the same predefined ...

Page 72

Philips Semiconductors The pins for line and field timing reference signals are RTCO, RTS1 and RTS0. Various real-time status information can be selected for the RTS pins. The signals are always available (output) and reflect the synchronization operation of the ...

Page 73

Philips Semiconductors FIDT: detected field frequency has changed (50 Hz RDCAP: ready for capture (true DCSTD[1:0]: detected color standard has changed or color lost. COPRO, COLSTR and TYPE3: various levels of copy protection have changed. 9.4.1.3 VBI data slicer VPSV: ...

Page 74

Philips Semiconductors Table 28: Symbol Pin XPD7 to XPD0 XCLK XDQ XRDY XRH XRV XTRI [1] Pin numbers for QFP160 in parenthesis. 9.5.1 X port configured as output If data output is enabled at the expansion port, then the data ...

Page 75

Philips Semiconductors – Adaptive luminance comb filter, peaking and chrominance trap are bypassed within the luminance processing This data type is defined for future enhancements. It could be activated for lines containing standard test signals within the vertical blanking period. ...

Page 76

Philips Semiconductors Table 30: Bit Table 31: Line number 261 262 263 264 and 265 266 to 282 283 284 285 to 524 ...

Page 77

Philips Semiconductors Table 32: Line number 309 310 311 and 312 313 to 335 336 337 to 622 623 624 and 625 9.5.2 X port configured as input If the data input mode is ...

Page 78

Philips Semiconductors The data formats at the image port are defined in Dwords of 32 bits (4 bytes), such as the related FIFO structures. However the physical data stream at the image port is only 16-bit or 8-bit wide; in ...

Page 79

Philips Semiconductors – Recoded VBI data bytes (8-bit) directly placed in ANC data field, 00h and FFh codes will be recoded to even parity codes 03h and FCh to suppress invalid ITU-R BT.656 codes There are no empty cycles in ...

Page 80

Philips Semiconductors Table 34: Symbol Pin HPD7 to HPD0 [1] Pin numbers for QFP160 in parenthesis. 9.8 Basic input and output timing diagrams I port and X port 9.8.1 I port output timing The following diagrams illustrate the output timing ...

Page 81

Philips Semiconductors ICLK IDQ IPD [ 7:0 ] IGPH Fig 41. Output timing I port for serial 8-bit data at start of a line (ICODE = 0) ICLK IDQ IPD [ 7 IGPH Fig 42. ...

Page 82

Philips Semiconductors ICLK IDQ IPD [ 7 HPD [ 7 SAV IGPH Fig 44. Output timing for 16-bit data output via I port and H port with codes (ICODE = 1), timing is ...

Page 83

Philips Semiconductors 2 10. I C-bus description The SAF7118 supports the ‘fast mode’ I 400 kbit/s). 2 10.1 I C-bus format S SLAVE ADDRESS W a. Write procedure. S SLAVE ADDRESS W Sr SLAVE ADDRESS R b. Read procedure (combined). ...

Page 84

Philips Semiconductors Table 36: Subaddress 00h F0h to FFh Video decoder: 01h to 1Fh 01h to 05h 06h to 19h 1Ah to 1Dh 1Eh and 1Fh Component processing and interrupt masking: 20h to 2Fh 20h to 22h 23h to 25h ...

Page 85

Table 37: I C-bus receiver/transmitter overview Register function Subaddress Chip version: register 00h Chip version (read only) 00h Video decoder: registers 01h to 1Fh Front-end part: registers 01h to 05h Increment delay 01h Analog input control 1 02h Analog ...

Page 86

Table 37: I C-bus receiver/transmitter overview Register function Subaddress Reserved 1Ah to 1Dh Status byte 1 video decoder (read only) 1Eh Status byte 2 video decoder (read only) 1Fh Component processing and interrupt masking part: registers 20h to 2Fh ...

Page 87

Table 37: I C-bus receiver/transmitter overview Register function Subaddress General purpose VBI data slicer part: registers 40h to 7Fh Slicer control 1 40h LCR2 to LCR24 ( 24) 41h to 57h Programmable framing code 58h Horizontal ...

Page 88

Table 37: I C-bus receiver/transmitter overview Register function Subaddress Task A definition: registers 90h to BFh Basic settings and acquisition window definition Task handling control 90h X port formats and configuration 91h X port input reference signal definition 92h ...

Page 89

Table 37: I C-bus receiver/transmitter overview Register function Subaddress Horizontal phase scaling Horizontal luminance scaling increment A8h A9h Horizontal luminance phase offset AAh Reserved ABh Horizontal chrominance scaling ACh increment ADh Horizontal chrominance phase offset AEh Reserved AFh Vertical ...

Page 90

Table 37: I C-bus receiver/transmitter overview Register function Subaddress Horizontal input window start C4h C5h Horizontal input window length C6h C7h Vertical input window start C8h C9h Vertical input window length CAh CBh Horizontal output window length CCh CDh ...

Page 91

Table 37: I C-bus receiver/transmitter overview Register function Subaddress Vertical scaling Vertical luminance scaling increment E0h E1h Vertical chrominance scaling increment E2h E3h Vertical scaling mode control E4h Reserved E5h to E7h Vertical chrominance phase offset ‘00’ E8h Vertical ...

Page 92

Philips Semiconductors 2 10.2 I C-bus details 10.2.1 Subaddress 00h Table 38: Chip Version (CV) identification; 00h[7:4]; read only register Function Logic levels ID7 Chip Version (CV) CV3 10.2.2 Subaddress 01h The programming of the horizontal increment delay is used ...

Page 93

Philips Semiconductors 10.2.3 Subaddress 02h Table 40: Analog input control 1 (AICO1); 02h[7:0] Bit Description D[7:6] analog function select; see Figure 4 and Figure 6 CVBS modes 1 D[5:0] mode selection modes 1 D[5:0] mode selection SAF7118_3 ...

Page 94

Philips Semiconductors Table 40: Analog input control 1 (AICO1); 02h[7:0] Bit Description CVBS modes 2 D[5:0] mode selection modes 2 D[5:0] mode selection CVBS modes 3 D[5:0] mode selection SAF7118_3 Product data sheet Multistandard video decoder with ...

Page 95

Philips Semiconductors Table 40: Analog input control 1 (AICO1); 02h[7:0] Bit Description Y-P -P modes B R D[5:0] mode selection RGB modes D[5:0] mode selection SAF7118_3 Product data sheet Multistandard video decoder with adaptive comb filter [1] …continued Symbol Value ...

Page 96

Philips Semiconductors Table 40: Analog input control 1 (AICO1); 02h[7:0] Bit Description VSB modes; see Figure 88 D[5:0] mode selection [1] Always refer to Table 70, usage of bits FSWE and FSWI. [2] To take full advantage of the Y/C ...

Page 97

Philips Semiconductors AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 48. MODE00 CVBS1 AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 50. ...

Page 98

Philips Semiconductors AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 52. MODE04 CVBS5 AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 54. ...

Page 99

Philips Semiconductors AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 56. MODE08 YC1 (gain adapted to AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 ...

Page 100

Philips Semiconductors AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 60. MODE0C YC3 (gain adapted to AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 ...

Page 101

Philips Semiconductors AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 64. MODE10 CVBS9 AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 66. ...

Page 102

Philips Semiconductors AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 68. MODE14 CVBS13 AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 70. ...

Page 103

Philips Semiconductors AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 72. MODE18 YC5 (gain adapted to Y AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 ...

Page 104

Philips Semiconductors AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 76. MODE1C YC7 (gain adapted to Y AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 ...

Page 105

Philips Semiconductors AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 80. MODE20 SY-P AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 82. ...

Page 106

Philips Semiconductors AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 84. MODE30 SRGB1 AI11 AI12 AI13 AI14 AI21 AI22 AI23 AI24 AI31 AI32 AI33 AI34 AI41 AI42 AI43 AI44 Fig 86. ...

Page 107

Philips Semiconductors Fig 88. VSB MODES (use CVBS modes with REFA = 1, DOSL = and GAFIX = 1) 10.2.4 Subaddress 03h Table 41: Analog input control 2 (AICO2); 03h[6:0] Bit Description D6 HL not reference select ...

Page 108

Philips Semiconductors 10.2.5 Subaddress 04h Table 42: Analog input control 3 (AICO3): static gain control channel 1; 03h[0] and 04h[7:0] Decimal Gain (dB) Sign bit value 03h[0] GAI18 0... 3 0 ...144 0 0 145... 0 0 ...511 +6 1 ...

Page 109

Philips Semiconductors 10.2.8 Subaddress 07h Table 45: Horizontal sync stop; 07h[7:0] Delay time (step Control bits size = 8/LLC) HSS7 128... 109 (50 Hz) forbidden (outside available central counter range) 128... 108 (60 Hz) 108 (50 Hz)... ...

Page 110

Philips Semiconductors 10.2.10 Subaddress 09h Table 47: Luminance control; 09h[7:0] Bit Description D7 chrominance trap/comb filter bypass D6 adaptive luminance comb filter D5 processing delay in non comb filter mode D4 remodulation bandwidth for luminance; see Figure 14 to Figure ...

Page 111

Philips Semiconductors 10.2.12 Subaddress 0Bh Table 49: Luminance contrast control: decoder part; 0Bh[7:0] Gain Control bits DCON7 1.984 (maximum) 0 1.063 (ITU level (luminance off (inverse luminance (inverse luminance) ...

Page 112

Philips Semiconductors Table 52: Chrominance control 1; 0Eh[7:0] Bit Description D[6:4] color standard selection in non AUTO mode D[6:4] color standard selection in AUTO mode (AUTO mode is selected, if either AUTO0 or AUTO1 is set; see below) D3 disable ...

Page 113

Philips Semiconductors 10.2.16 Subaddress 0Fh Table 53: Chrominance gain control; 0Fh[7:0] Bit Description D7 automatic chrominance gain control D[6:0] chrominance gain value (if ACGC is set to logic 1) 10.2.17 Subaddress 10h Table 54: Chrominance control 2; 10h[7:0] Bit Description ...

Page 114

Philips Semiconductors Table 55: Mode/delay control; 11h[7:0] Bit Description D[2:0] luminance delay compensation (steps in 2/LLC) 10.2.19 Subaddress 12h Table 56: RT signal control: RTS0 output; 12h[3:0] The polarity of any signal on RTS0 can be inverted via RTP0[11h[3]]. RTS0 ...

Page 115

Philips Semiconductors Table 57: RT signal control: RTS1 output; 12h[7:4] The polarity of any signal on RTS1 can be inverted via RTP1[11h[6]]. RTS1 output 3-state Constant LOW CREF (13.5 MHz toggling pulse; see CREF2 (6.75 MHz toggling pulse; see [1] ...

Page 116

Philips Semiconductors 10.2.20 Subaddress 13h Table 58: RT/X port output control; 13h[7:0] Bit Description D7 RTCO output enable D6 X port XRH output selection D[5:4] X port XRV output selection D3 horizontal lock indicator selection D[2:0] XPD7 to XPD0 (port ...

Page 117

Philips Semiconductors 10.2.21 Subaddress 14h Table 59: Analog/ADC/auto/compatibility control; 14h[7:0] Bit Description D7 compatibility bit for SAA7199 D6 update time interval for AGC value 23h[7] and analog test select 14h[5:4] D3 XTOUT output enable D2 automatic chrominance standard detection control ...

Page 118

Philips Semiconductors 10.2.23 Subaddress 16h Table 61: VGATE stop; 17h[1] and 16h[7:0] Stop of VGATE pulse (HIGH-to-LOW transition), VGPS = 0; see Field Frame Decimal line value counting 50 Hz 1st 1 312 2nd 314 1st 2 0... 2nd 315 ...

Page 119

Philips Semiconductors 10.2.25 Subaddress 18h Table 63: Raw data gain control; RAWG[7:0] 18h[7:0]; see Gain Control bits RAWG7 255 (double amplitude) 0 128 (nominal level (off) 0 10.2.26 Subaddress 19h Table 64: Raw data offset ...

Page 120

Philips Semiconductors 10.2.28 Subaddress 1Fh Table 66: Status byte 2 video decoder; 1Fh[7:5] and 1Fh[3:0]; read only register Bit Description D7 status bit for interlace detection D6 status bit for horizontal and vertical loop D5 identification bit for detected field ...

Page 121

Philips Semiconductors 10.3.2 Subaddress 24h Table 68: Analog input control 6 (AICO6): static gain control channel 3; 23h[0] and 24h[7:0] Decimal Gain Sign bit value (dB) 23h[0] GAI38 0... 3 0 ...144 0 0 145... 0 0 ...511 +6 1 ...

Page 122

Philips Semiconductors Table 70: Component delay/fast switch control; 29h[7:0] Bit Description D[2:0] component input delay adjustment relative to decoded CVBS signal 10.3.5 Subaddress 2Ah Table 71: Luminance brightness control component part; 2Ah[7:0] Offset Control bits CBRI7 255 ...

Page 123

Philips Semiconductors 10.4 Interrupt mask registers See also 10.4.1 Subaddress 2Dh Table 74: Interrupt mask 1; 2Dh[4:2] and 2Dh[1] Bit Description D4 interrupt enable ‘VPS signal detected/lost’ (corresponding flag: 60h[4]) D3 interrupt enable ‘PALplus detected/lost’ (corresponding flag: 60h[3]) MPPV D2 ...

Page 124

Philips Semiconductors 10.5 Programming register audio clock generation See equations in 10.5.1 Subaddresses 30h to 32h Table 77: Audio master clock (AMCLK) cycles per field Subaddress Control bits 30h ACPF7 31h ACPF15 32h - 10.5.2 Subaddresses 34h ...

Page 125

Philips Semiconductors 10.6 Programming register VBI data slicer 10.6.1 Subaddress 40h Table 82: Slicer control 1; 40h[6:4] Bit Description D6 Hamming check D5 framing code error D4 amplitude searching 10.6.2 Subaddresses 41h to 57h Table 83: Line control register; LCR2 ...

Page 126

Philips Semiconductors 10.6.4 Subaddress 59h Table 85: Horizontal offset for slicer; slicer set 59h and 5Bh Horizontal offset Recommended value 10.6.5 Subaddress 5Ah Table 86: Vertical offset for slicer; slicer set 5Ah and 5Bh Vertical offset Minimum value 0 Maximum ...

Page 127

Philips Semiconductors 10.6.9 Subaddress 60h Table 90: Slicer status byte 0; 60h[6:2]; read only register Bit Description D6 framing code valid D5 framing code valid D4 VPS valid D3 PALplus valid D2 closed caption valid 10.6.10 Subaddresses 61h and 62h ...

Page 128

Philips Semiconductors Table 93: Global control 1; global set 80h[3:0] I port and scaler back-end clock selection ICLK output and back-end clock is line-locked clock LLC from decoder ICLK output and back-end clock is XCLK from X port ICLK output ...

Page 129

Philips Semiconductors Table 96: I port signal definitions; global set 84h[7:6] and 86h[5] I port signal definitions IGP0 is set to logic 0 (default polarity) IGP0 is the output FIFO almost filled flag IGP0 is the output FIFO overflow flag ...

Page 130

Philips Semiconductors Table 99: X port signal definitions text slicer; global set 85h[7:5] X port signal definitions text slicer Video data limited to range 1 to 254 Video data limited to range 8 to 247 Dword byte swap, influences serial ...

Page 131

Philips Semiconductors Table 102: I port FIFO flag control and arbitration; global set 86h[3:0] I port FIFO flag control and arbitration FAE FIFO flag almost empty level < 16 Dwords < 8 Dwords < 4 Dwords 0 Dwords FAF FIFO ...

Page 132

Philips Semiconductors 10.7.3 Subaddress 88h Table 105: ADC port control; global set 88h[7:4] ADC port output control/start-up control DPROG = 0 after reset DPROG = 1 can be used to assign that the device has been programmed; this bit can ...

Page 133

Philips Semiconductors Table 107: Status information scaler part; 8Fh[7:0]; read only register 2 Bit I C-bus status bit D2 ERROF D1 FIDSCI D0 FIDSCO [1] Status information is unsynchronized and shows the actual status at the time of I 10.7.5 ...

Page 134

Philips Semiconductors 10.7.6 Subaddresses 91h to 93h Table 111: X port formats and configuration; register set A [91h[7:3]] and B [C1h[7:3]] Scaler input format and configuration source selection Only if XRQT[83h[2 scaler input source reacts on SAF7118 request ...

Page 135

Philips Semiconductors Table 113: X port input reference signal definitions; register set A [92h[7:4]] and B [C2h[7:4]] X port input reference signal definitions XRV is a frame sync, V pulses are generated internally on both edges of FS input X ...

Page 136

Philips Semiconductors Table 116: I port output format and configuration; register set A [93h[4:0]] and B [C3h[4:0]] I port output formats and configuration Dword formatting Dword formatting ...

Page 137

Philips Semiconductors Table 119: Vertical input window start; register set A [98h[7:0]; 99h[3:0]] and B [C8h[7:0]; C9h[3:0]] Vertical input acquisition window definition offset in Y (vertical) [1] direction Line offset = 0 Line offset = 1 Maximum line offset = ...

Page 138

Philips Semiconductors Table 122: Vertical output window length; register set A [9Eh[7:0]; 9Fh[3:0]] and B [CEh[7:0]; CFh[3:0]] Vertical output acquisition window definition number of desired output lines in Y (vertical) direction No output 1 pixel Maximum possible number of output ...

Page 139

Philips Semiconductors Table 126: Prescaler DC gain and FIR prefilter control; register set A [A2h[3:0]] and B [D2h[3:0]] Prescaler DC gain Prescaler output is renormalized by gain factor = 1 Prescaler output is renormalized by gain factor = Prescaler output ...

Page 140

Philips Semiconductors 10.7.11 Subaddresses A8h to AEh Table 130: Horizontal luminance scaling increment; register set A [A8h[7:0]; A9h[7:0]] and B [D8h[7:0]; D9h[7:0]] Horizontal luminance Control bits scaling increment A [A9h[7:4]] B [D9h[7:4]] XSCY[15:12] 1024 Scale = (theoretical) 0000 1 zoom ...

Page 141

Philips Semiconductors 10.7.12 Subaddresses B0h to BFh Table 134: Vertical luminance scaling increment; register set A [B0h[7:0]; B1h[7:0]] and B [E0h[7:0]; E1h[7:0]] Vertical luminance scaling Control bits increment A [B1h[7:4]] B [E1h[7:4]] ySCY[15:12] 1024 Scale = (theoretical) 0000 1 zoom ...

Page 142

Philips Semiconductors Table 138: Vertical luminance phase offset ‘00’; register set A [BCh[7:0]] and B [ECh[7:0]] Vertical luminance phase Control bits offset YPY07 Offset = Offset = = 1 line 0 32 255 Offset ...

Page 143

Philips Semiconductors Table 139: Decoder part start setup values for the three main standards Subaddress Register function (hexadecimal) 0F chrominance gain control 10 chrominance control 2 11 mode/delay control 12 RT signal control 13 RT/X port output control 14 analog/ADC/compatibility ...

Page 144

Philips Semiconductors Table 140: Component video part and interrupt mask start setup values Subaddress Register function (hexadecimal) 2B component contrast control 2C component saturation control 2D interrupt mask 1 2E interrupt mask 2 2F interrupt mask 3 [1] All X ...

Page 145

Philips Semiconductors 11.4 Data slicer and data type control part The given values force the following behavior of the SAF7118 VBI data slicer part: • Closed captioning data are expected at line 21 of field 1 (60 Hz/525 line system) ...

Page 146

Philips Semiconductors 11.5 Scaler and interfaces Table 143 • prsc = prescale ratio • fisc = fine scale ratio • vsc = vertical scale ratio The ratio is defined as: In the following settings the VBI data slicer is inactive. ...

Page 147

Philips Semiconductors 11.5.3 Examples Table 143: Example of configurations Example Scaler source and reference events number 1 analog input to 8-bit I port output, with SAV/EAV codes, 8-bit serial byte stream decoder output at X port; acquisition trigger at falling ...

Page 148

Philips Semiconductors Table 144: Scaler and interface configuration example 2 I C-bus Main functionality address (hex) 96 horizontal input (source) window length (XS vertical input offset (YO vertical input (source) window length (YS horizontal ...

Page 149

... I/O pins voltage difference between V and V SSA(n) SSD(n) storage temperature ambient temperature electrostatic discharge voltage Parameter thermal resistance from junction to ambient SAF7118EH SAF7118H value can vary depending on the board layout. To minimize the effective R th(j-a) Rev. 03 — 16 February 2006 Conditions Min 0.5 0.5 0.5 0.5 outputs in 3-state 0.5 ...

Page 150

Philips Semiconductors 14. Characteristics Table 147: Characteristics DDD DDA levels refer to drawings and conditions illustrated in Symbol Parameter Supplies V digital supply DDD voltage ...

Page 151

Philips Semiconductors Table 147: Characteristics …continued DDD DDA levels refer to drawings and conditions illustrated in Symbol Parameter 9-bit analog-to-digital converters B analog bandwidth differential ...

Page 152

Philips Semiconductors Table 147: Characteristics …continued DDD DDA levels refer to drawings and conditions illustrated in Symbol Parameter V LOW-level output OL(n) voltage all other ...

Page 153

Philips Semiconductors Table 147: Characteristics …continued DDD DDA levels refer to drawings and conditions illustrated in Symbol Parameter Crystal specification (X1) T ambient amb(X1) temperature ...

Page 154

Philips Semiconductors Table 147: Characteristics …continued DDD DDA levels refer to drawings and conditions illustrated in Symbol Parameter duty factors for t /t XCLKH XCLKL ...

Page 155

Philips Semiconductors clock input XCLK t SU;DAT data and control inputs (X port) input XDQ data and control outputs X port, I port clock outputs LLC, LLC2, XCLK, ICLK and ICLK input Fig 89. Data input/output timing diagram (X port, ...

Page 156

... ALRCLK ASCLK SDA SCL INT_A P11 P12 N11 P10 C11, A11, B10, A10, B9, A9, B8, A8 SAF7118EH G13, F14, F13, E14, E12, E13, E11, D14 K11, J13, J14, H13, L4, M4, H14, H11, G12, G14 L8, M8, M5, M9, L11, M11, J12, G11, ...

Page 157

Philips Semiconductors V DDD 680 BAT83 150 680 BF840 75 DGND CVBS1 CVBS2 VSB1 VSB2 ...

Page 158

Philips Semiconductors SAF7118 B4(155) A3(156) XTALI XTALO 32.11 MHz 4 With 3rd harmonic quartz. Crystal load = 8 pF. SAF7118 B4(155) A3(156) XTALI 24.576 MHz 4 ...

Page 159

Philips Semiconductors 16. Test information 16.1 Boundary scan test The SAF7118 has built-in logic and 5 dedicated pins to support boundary scan testing which allows board testing without special hardware (nails). The SAF7118 follows the “IEEE Std. 1149.1 - Standard ...

Page 160

Philips Semiconductors When the IDCODE instruction is loaded into the BST instruction register, the identification register will be connected between pins TDI and TDO of the IC. The identification register will load a component specific code during the CAPTURE_DATA_REGISTER state ...

Page 161

Philips Semiconductors 17. Package outline HBGA156: plastic thermal enhanced ball grid array package; 156 balls; body 1.15 mm; heatsink ball A1 index area ...

Page 162

Philips Semiconductors QFP160: plastic quad flat package; 160 leads (lead length 1.6 mm); body 3.4 mm; high stand-off height y 120 121 pin 1 index 160 DIMENSIONS (mm are ...

Page 163

Philips Semiconductors 18. Soldering 18.1 Introduction to soldering surface mount packages This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages ...

Page 164

Philips Semiconductors – smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves at the downstream end. • For packages with leads on four sides, ...

Page 165

Philips Semiconductors [4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, ...

Page 166

Philips Semiconductors 19. Revision history Table 150: Revision history Document ID Release date SAF7118_3 20060216 • Modifications: The format of this data sheet has been redesigned to comply with the new presentation and information standard of Philips Semiconductors • Table ...

Page 167

Philips Semiconductors 20. Data sheet status [1] Level Data sheet status Product status I Objective data Development II Preliminary data Qualification III Product data Production [1] Please consult the most recently issued data sheet before initiating or completing a design. ...

Page 168

Philips Semiconductors 25. Contents 1 General description . . . . . . . . . . . . . . . . . . . . . . 1 2 Features . . . . . . . . ...

Page 169

Philips Semiconductors 2 10.1 I C-bus format 10.2 I C-bus details . . . ...

Page 170

Philips Semiconductors 20 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 167 21 Definitions . . . . . . . . . ...

Related keywords