MC68030RC33

Manufacturer Part NumberMC68030RC33
DescriptionMC68030RC33ENHANCED 32-BIT MICROPROCESSOR
ManufacturerMotorola
MC68030RC33 datasheet
 


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
Page 101
102
Page 102
103
Page 103
104
Page 104
105
Page 105
106
Page 106
107
Page 107
108
Page 108
109
Page 109
110
Page 110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
Page 106/602

Download datasheet (4Mb)Embed
PrevNext
Instruction Set Summary
The CAS2 instruction can also be used to correctly maintain a first-in-first-out doubly linked
list. A doubly linked list needs two controlled locations, LIST_PUT and LIST_GET, which
contain pointers to the last element inserted in the list and the next to be removed,
respectively. If the list is empty, both pointers are NULL (0).
The code fragment shown in Figure 3–4 illustrates the insertion of an element in a doubly
linked list. The first two instructions load the effective addresses of LIST_PUT and
LIST_GET into registers A0 and A1, respectively. The next instruction moves the address
of the new element into register D2. Another MOVE instruction moves the address in
LIST_PUT into register D0. At label DILOOP, a TST instruction tests the value in D0, and
the BEQ instruction branches to the MOVE instruction when D0 is equal to zero. Assuming
the list is empty, this MOVE instruction is executed next; it moves the zero in D0 into the
NEXT and LAST pointers of the new element. Then the CAS2 instruction moves the address
of the new element into both LIST_PUT and LIST_GET, assuming that both of these
pointers still contain zero. If not, the BNE instruction branches to the TST instruction at label
DILOOP to try again. This time, the BEQ instruction does not branch, and the following
MOVE instruction moves the address in D0 to the NEXT pointer of the new element. The
CLR instruction clears register D1 to zero, and the MOVE instruction moves the zero into
the LAST pointer of the new element. The LEA instruction loads the address of the LAST
pointer of the most recently inserted element into register A1. Assuming the LIST_PUT
pointer and the pointer in A1 have not been changed, the CAS2 instruction stores the
address of the new element into these pointers.
The code fragment to delete an element from a doubly linked list is similar (see Figure 3–5).
The first two instructions load the effective addresses of pointers LIST_PUT and LIST_GET
into registers A0 and A1, respectively. The MOVE instruction at label DDLOOP moves the
LIST_GET pointer into register D1. The BEQ instruction that follows branches out of the
routine when the pointer is zero. The MOVE instruction moves the LAST pointer of the
element to be deleted into register D2. Assuming this is not the last element in the list, the
Z condition code is not set, and the branch to label DDEMPTY does not occur. The LEA
instruction loads the address of the NEXT pointer of the element at the address in D2 into
register A2. The next instruction, a CLR instruction, clears register D0 to zero. The CAS2
instruction compares the address in D1 to the LIST-GET pointer and to the address in
register A2. If the pointers have not been updated, the CAS2 instruction loads the address
in D2 into the LIST_GET pointer and zero into the address in register A2.
3-28
MC68030 USER’S MANUAL
MOTOROLA