MC68030RC33

Manufacturer Part NumberMC68030RC33
DescriptionMC68030RC33ENHANCED 32-BIT MICROPROCESSOR
ManufacturerMotorola
MC68030RC33 datasheet
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
Page 201
202
Page 202
203
Page 203
204
Page 204
205
Page 205
206
Page 206
207
Page 207
208
Page 208
209
Page 209
210
Page 210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
Page 209/602

Download datasheet (4Mb)Embed
PrevNext
The simultaneous assertion of BERR and HALT during a bus cycle normally indicates that
the cycle should be retried. However, during the second, third, or fourth cycle of a burst
operation, this signal combination indicates a bus error condition, which aborts the burst
operation. In addition, the processor remains in the halted state until HALT is negated. For
information about bus error processing, refer to 7.5.1 Bus Errors.
Figure 7-37 is a flowchart of the burst operation. The following timing diagrams show various
burst operations. Figure 7-38 shows burst operations for long-word requests with two wait
states inserted in the first access and one wait cycle inserted in the subsequent accesses.
Figure 7-39 shows a burst operation that fails to complete normally due to CBACK negating
prematurely. Figure 7-40 shows a burst operation that is deferred because the entire
operand does not correspond to the same cache line. Figure 7-41 shows a burst operation
aborted by CIIN. Because CBACK corresponds to the next cycle, three long words are
transferred even though CBACK is only asserted for two clock periods.
The burst operation sequence begins with states S0–S3, which are very similar to those
states for a synchronous read cycle except that CBREQ is asserted. S4-S9 perform the final
three reads for a complete burst operation.
State 0
The burst operation starts with S0. The processor drives ECS low, indicating the
beginning of an external cycle. When the cycle is the first cycle of a read operation, OCS
is driven low at the same time. During S0, the processor places a valid address on A0–
A31 and valid function codes on FC0–FC2. The function codes select the address space
for the cycle. The processor drives R/W high, indicating a read cycle, and drives DBEN
inactive to disable the data buffers. SIZ0–SIZ1 become valid, indicating the number of
operand bytes to be transferred. CIOUT also becomes valid, indicating the state of the
MMU CI bit in the address translation descriptor or in the appropriate TTx register.
State 1
One-half clock later in S1, the processor asserts AS to indicate that the address on the
address bus is valid. The processor also asserts DS during S1. CBREQ is also asserted,
indicating that the MC68030 can perform a burst operation into one of its caches and can
read in four long words. In addition, ECS (and OCS, if asserted) is negated during S1.
State 2
The selected device uses R/W, SIZ0–SIZ1, A0–A1, and CIOUT to place the data on the
data bus. (The first cycle must supply the long word at the corresponding long-word
boundary.) All of the byte sections (D24–D31, D16–D23, D8–D15, and D0–D7) of the data
bus must be driven since the burst operation latches 32 bits on every cycle. During S2,
the processor drives DBEN active to enable external data buffers. In systems that use
two-clock synchronous bus cycles, the timing of DBEN may prevent its use. At the
beginning of S2, the processor tests the level of STERM. If STERM is recognized, the
processor latches the incoming data at the end of S2. For the burst operation to proceed,
CBACK must be asserted when STERM is recognized. If the data for the current cycle is
MOTOROLA
MC68030 USER’S MANUAL
Bus Operation
7-63