HYB39S128160CT-7 Infineon Technologies AG, HYB39S128160CT-7 Datasheet

no-image

HYB39S128160CT-7

Manufacturer Part Number
HYB39S128160CT-7
Description
HYB39S128160CT-7128-MBit Synchronous DRAM
Manufacturer
Infineon Technologies AG
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
HYB39S128160CT-7
Manufacturer:
HY
Quantity:
6 100
Part Number:
HYB39S128160CT-7
Manufacturer:
HY
Quantity:
6 100
Part Number:
HYB39S128160CT-7
Manufacturer:
ROHM
Quantity:
12 501
Part Number:
HYB39S128160CT-7
Manufacturer:
NS
Quantity:
6
Part Number:
HYB39S128160CT-7
Manufacturer:
INFINEON/英飞凌
Quantity:
20 000
Part Number:
HYB39S128160CT-7.5
Manufacturer:
JRC
Quantity:
530
Part Number:
HYB39S128160CT-7.5
Manufacturer:
INFINEON
Quantity:
1 000
Part Number:
HYB39S128160CT-7.5
Manufacturer:
INFINEON/英飞凌
Quantity:
20 000
Company:
Part Number:
HYB39S128160CT-7.5
Quantity:
9
128-MBit Synchronous DRAM
• High Performance:
• Single Pulsed RAS Interface
• Fully Synchronous to Positive Clock Edge
• 0 to 70 C operating temperature
• Four Banks controlled by BA0 & BA1
• Programmable CAS Latency: 2, 3
• Programmable Wrap Sequence: Sequential
• Programmable Burst Length:
The HYB 39S128400/800/160CT are four bank Synchronous DRAM’s organized as 4
banks
devices achieve high speed data transfer rates by employing a chip architecture that prefetches
multiple bits and then synchronizes the output data to a system clock. The chip is fabricated using
the Infineon advanced 0.17 micron process technology.
The device is designed to comply with all industry standards set for synchronous DRAM products,
both electrically and mechanically. All of the control, address, data input and output circuits are
synchronized with the positive edge of an externally supplied clock.
Operating the four memory banks in an interleave fashion allows random access operation to occur
at a higher rate than is possible with standard DRAMs. A sequential and gapless data rate is
possible depending on burst length, CAS latency and speed grade of the device.
Auto Refresh (CBR) and Self Refresh operation are supported. These devices operate with a single
3.3 V
INFINEON Technologies
f
t
t
t
t
or Interleave
1, 2, 4, 8 and full page
CK
CK3
AC3
CK2
AC2
0.3 V power supply and are available in TSOPII packages.
8MBit x4, 4 banks
-7
143
7
5.4
7.5
5.4
-7.5
133
7.5
5.4
10
6
-8
125
8
6
10
6
4MBit x8 and 4 banks
Units
MHz
ns
ns
ns
ns
1
• Multiple Burst Read with Single Write
• Automatic and Controlled Precharge
• Data Mask for Read/Write Control (x4, x8)
• Data Mask for byte control (x16)
• Auto Refresh (CBR) and Self Refresh
• Power Down and Clock Suspend Mode
• 4096 Refresh Cycles / 64 ms
• Random Column Address every CLK
• Single 3.3 V
• LVTTL Interface
• Plastic Packages:
• -7
Operation
Command
(1-N Rule)
P-TSOPII-54 400mil x 875 mil width
-7.5 for PC 133 3-3-3 applications
-8
(x4, x8, x16)
2Mbit x16 respectively. These synchronous
128-MBit Synchronous DRAM
HYB 39S128400/800/160CT(L)
for PC 133 2-2-2 applications
for PC100 2-2-2 applications
0.3 V Power Supply
9.01

Related parts for HYB39S128160CT-7

HYB39S128160CT-7 Summary of contents

Page 1

Synchronous DRAM • High Performance: -7 -7.5 -8 Units f 143 133 125 MHz 7 CK3 t 5.4 5 AC3 t 7 CK2 t 5 AC2 ...

Page 2

Ordering Information Type Function Code Package HYB 39S128400CT-7 PC133-222-520 P-TSOP-54 (400mil) HYB 39S128400CT-7.5 PC133-333-520 P-TSOP-54 (400mil) HYB 39S128400CT-8 PC100-222-620 P-TSOP-54 (400mil) HYB 39S128800CT-7 PC133-222-520 P-TSOP-54 (400mil) HYB 39S128800CT-7.5 PC133-333-520 P-TSOP-54 (400mil) HYB 39S128800CT-8 PC100-222-620 P-TSOP-54 (400mil) HYB 39S128160CT-7 PC133-222-520 P-TSOP-54 ...

Page 3

DQ0 DQ0 N. DDQ DDQ DDQ DQ1 N.C. N.C. DQ2 DQ1 DQ0 SSQ SSQ SSQ DQ3 N.C. N.C. DQ4 DQ2 N. DDQ DDQ DDQ DQ5 ...

Page 4

Functional Block Diagrams Column Addresses A0 - A9, A11, AP, BA0, BA1 Column Address Column Address Counter Buffer Row Decoder Memory Array Bank 0 4096 x 2048 x 4 Bit Input Buffer Output Buffer DQ0 - DQ3 Block Diagram: 32M ...

Page 5

Column Addresses A0 - A9, AP, BA0, BA1 Column Address Column Address Counter Buffer Row Decoder Memory Array Bank 0 4096 x 1024 x 8 Bit Input Buffer Output Buffer DQ0 - DQ7 Block Diagram: 16M x8 SDRAM (12 / ...

Page 6

Column Addresses A0 - A8, AP, BA0, BA1 Column Address Column Address Counter Buffer Row Decoder Memory Array Bank 0 4096 x 512 4096 x 512 x 16 Bit Input Buffer Output Buffer DQ0 - DQ15 Block Diagram: 8M x16 ...

Page 7

Signal Pin Description Pin Type Signal Polarity Function CLK Input Pulse Positive Edge CKE Input Level Active High CS Input Pulse Active Low RAS Input Pulse Active CAS Low A11 Input Level – BA0, BA1 Input Level ...

Page 8

Signal Pin Description (cont’d) Pin Type Signal Polarity Function DQM Input Pulse Active LDQM High UDQM V Supply – – Supply – – DDQ V SSQ INFINEON Technologies HYB 39S128400/800/160CT(L) 128-MBit Synchronous DRAM The Data Input/Output ...

Page 9

Operation Definition All of SDRAM operations are defined by states of control signals CS, RAS, CAS, WE, and DQM at the positive edge of the clock. The following list shows the truth table for the operation commands. Operation Device CKE ...

Page 10

Address Inputs for Mode Register Set Operation BA1 BA0 A11 A10 Operation Mode Operation Mo de BA1 BA0 M11 M10 ...

Page 11

Power On and Initialization The default power on state of the mode register is supplier specific and may be undefined. The following power on and initialization sequence guarantees the device is preconditioned to each users specific needs. Like a conventional ...

Page 12

In other words, unlike burst length and 8, full page burst continues until it is terminated using another command. Similar to the page mode of conventional DRAM’s, burst read or ...

Page 13

A minimum RC refresh mode. The same rule applies to any access command after the automatic refresh operation. The chip has an on-chip timer and the Self Refresh mode is available. It enters the mode when ...

Page 14

Bank Selection by Address Bits A10 BA0 BA1 Bank Bank Bank Bank all Banks Burst Termination Once a burst read or ...

Page 15

Electrical Characteristics Absolute Maximum Ratings Operating Temperature Range....................................................................................... Storage Temperature Range .................................................................................. – 150 C Input/Output Voltage ......................................................................................... – 0.3 to Power Supply Voltage .............................................................................. – 0 4.6 ...

Page 16

Operating Currents 3 (Recommended Operating Conditions unless otherwise noted) Parameter & Test Condition Operating current – All banks operated CK CK(MIN.), in random access,all ...

Page 17

AC Characteristics 3 Parameter Symb. Clock and Clock Enable Clock Cycle Time CAS Latency = CAS Latency = 2 ...

Page 18

AC Characteristics (cont’ 3 Parameter Symb. Refresh Cycle Refresh Period t REF (4096 cycles) Self Refresh Exit Time t SREX Read Cycle ...

Page 19

CLOCK HOLD t SETUP INPUT 1 OUTPUT 3. If clock rising time is longer than 1 ns, a time ( longer than 1 ns, a time ...

Page 20

Package Outlines Plastic Package, P-TSOPII-54 ( 400 mil, 0.8 mm lead pitch ) Thin Small Outline Package, SMD 0.8 26x 0.8 = 20.8 3) +0.1 0.35 -0. 2.5 max 1) 22.22 ±0.13 Index Marking 1) Does not include ...

Page 21

Timing Diagrams 1. Bank Activate Command Cycle 2. Burst Read Operation 3. Read Interrupted by a Read 4. Read to Write Interval 4.1 Read to Write Interval 4.2 Minimum Read to Write Interval 4.3 Non-Minimum Read to Write Interval 5. ...

Page 22

Bank Activate Command Cycle (CAS latency = CLK Bank B Address Row Addr. Bank B Command NOP Activate "H" or "L" 2. Burst Read Operation (Burst Length = 4, CAS latency = ...

Page 23

Read Interrupted by a Read (Burst Length = 4, CAS latency = CLK Command Read A Read B CAS latency = DQ’s CK2 CAS latency = DQ’s CK3 4. ...

Page 24

Minimum Read to Write Interval (Burst Length = 4, CAS latency = CLK DQM Command NOP NOP CAS latency = DQ’s CK2 "H" or "L" Non-Minimum Read to Write Interval ...

Page 25

Burst Write Operation (Burst Length = 4, CAS latency = CLK Command NOP Write A DQ’s DIN A0 The first data element and the Write are registered on the same clock edge. INFINEON Technologies T2 ...

Page 26

Write and Read Interrupt 6.1 Write Interrupted by a Write (Burst Length = 4, CAS latency = CLK 1 Clk Interval Command NOP Write A 1 Clk Interval DQ’s DIN A0 6.2 Write Interrupted by ...

Page 27

Burst Write and Read with Auto Precharge 7.1 Burst Write with Auto-Precharge (Burst Length = 2, CAS latency = CLK CAS Latency = 2: Bank A Command NOP Active DQ’s CAS Latency = 3: ...

Page 28

AC Parameters 8.1 AC Parameters for a Write Timing CLK CK2 t CL CKE t CKS RAS CAS RAx t AS ...

Page 29

AC Parameters for a Read Timing CLK CK2 t CL CKE CKS RAS CAS RAx t AS Addr. RAx DQM Hi-Z DQ ...

Page 30

Mode Register Set CLK CKE CS RAS CAS Address Key Addr. Precharge Command All Banks Mode Register Set Command INFINEON Technologies T10 T11 T12 T13 t ...

Page 31

Power on Sequence and Auto Refresh (CBR CLK CKE High Level is required CS RAS CAS Addr. DQM t RP Hi-Z DQ Precharge Command All Banks Inputs must be 1st Auto ...

Page 32

Clock Suspension ( Using CKE) 11.1 Clock Suspension During Burst Read CAS Latency = CLK t CK2 CKE CS RAS CAS RAx Addr. RAx CAx DQM Hi-Z DQ Activate Read ...

Page 33

Clock Suspension During Burst Read CAS Latency = CLK t CK3 CKE CS RAS CAS RAx Addr. RAx CAx DQM Hi-Z DQ Activate Read Command Command Bank A Bank A ...

Page 34

Clock Suspension During Burst Write CAS Latency = CLK t CK2 CKE CS RAS CAS RAx Addr. RAx CAx DQM Hi-Z DQ DAx0 DAx1 Activate Clock Command Suspend Bank A ...

Page 35

Clock Suspension During Burst Write CAS Latency = CLK t CK3 CKE CS RAS CAS WE BA A8/AP RAx Addr. RAx CAx DQMx Hi-Z DQ DAx0 Activate Clock Command Suspend Bank A 1 ...

Page 36

Power Down Mode and Clock Suspend CLK t CKS t CK2 CKE CS RAS CAS RAx Addr. RAx DQM Hi-Z DQ Activate Active Command Standby Bank A Clock Suspend Clock Suspend ...

Page 37

Self Refresh (Entry and Exit CLK CKE t CKS CS RAS CAS Addr. DQM Hi-Z DQ All Banks Self Refresh must be idle Entry INFINEON Technologies ...

Page 38

Auto Refresh (CBR CLK t CK2 CKE CS RAS CAS Addr. t (Minimum Interval) RP DQM Hi-Z DQ Precharge Auto Refresh Command Command All Banks INFINEON Technologies ...

Page 39

Random Column Read (Page within same Bank) 15.1 CAS Latency = CLK t CK2 CKE CS RAS CAS RAw Addr. RAw CAw DQM Activate Read Command Command ...

Page 40

CAS Latency = CLK t CK3 CKE CS RAS CAS RAw Addr. RAw CAw DQM Activate Read Command Command Bank A Bank A INFINEON Technologies T5 T6 ...

Page 41

Random Column write (Page within same Bank) 16.1 CAS Latency = CLK t CK2 CKE CS RAS CAS RBw Addr. RBw CBw DQM DBw0 DBw1 DBw2 Activate ...

Page 42

CAS Latency = CLK t CK3 CKE CS RAS CAS RBz Addr. RBz CBz DQM DBw0 DBw1 DBw2 Activate Write Command Command Bank B Bank B INFINEON ...

Page 43

Random Row Read (Interleaving Banks) with Precharge 17.1 CAS Latency = CLK t CK2 High CKE CS RAS CAS RBx Addr. RBx CBx t RCD DQM t AC2 Hi-Z Bx0 ...

Page 44

CAS Latency = CLK t CK3 CKE High CS RAS CAS RBx Addr. RBx CBx t RCD DQM Hi-Z DQ Activate Read Command Command Bank B Bank B INFINEON Technologies ...

Page 45

Random Row Write (Interleaving Banks) with Precharge 18.1 CAS Latency = CLK t CK2 High CKE CS RAS CAS RAx Addr. RAx CAx t RCD DQM Hi-Z DQ DAx0 DAx1 ...

Page 46

CAS Latency = CLK t CK3 CKE High CS RAS CAS RAx Addr. RAx CAx t RCD DQM Hi-Z DQ DAx0 DAx1 DAx2 Activate Write Command Command Bank A Bank ...

Page 47

Precharge termination of a Burst 19.1 CAS Latency = CLK t CK2 CKE High CS RAS CAS RAx Addr. RAx CAx DQM DAx0 DAx1 DAx2 Activate Write ...

Page 48

Full Page Burst Operation 20.1 Full Page Burst Read, CAS Latency = CLK t CK2 High CKE CS RAS CAS RAx RBx Addr. RAx CAx RBx DQM Hi ...

Page 49

Full Page Burst Operation 20.2 Full Page Burst Write, CAS Latency = CLK t CK3 High CKE CS RAS CAS RAx Addr. RAx CAx DQM Hi-Z DQ Activate Activate Activate ...

Page 50

TABLE OF CONTENTS 128-MBit Synchronous DRAM Ordering Information Pin Definitions and Functions Pin Configuration for x4, x8 & x16 Organized 128M-DRAMs Functional Block Diagrams Block Diagram: 32M x4 SDRAM ( addressing Block Diagram: 16M x8 SDRAM ...

Page 51

Attention please ! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. This infomation describes the type of components and ...

Related keywords