MG300Q2YS60A

Manufacturer Part NumberMG300Q2YS60A
ManufacturerTOSHIBA Semiconductor CORPORATION
MG300Q2YS60A datasheet
 


1
Page 1
2
Page 2
3
Page 3
4
Page 4
5
Page 5
6
Page 6
Page 1/6

Download datasheet (152Kb)Embed
Next
TOSHIBA IGBT Module Silicon N Channel IGBT
MG300Q2YS65H
High Power & High Speed Switching
Applications
·
High input impedance
·
Enhancement-mode
The electrodes are isolated from case.
·
Equivalent Circuit
E1
C1
G1 E1/C2
(Ta = = = = 25°C)
Maximum Ratings
Characteristics
Collector-emitter voltage
Gate-emitter voltage
DC
Collector current
1 ms
DC
Forward current
1 ms
Collector power dissipation
(Tc = 25°C)
Junction temperature
Storage temperature range
Isolation voltage
Terminal
Screw torque
Mounting
E2
E2
G2
JEDEC
JEITA
TOSHIBA
Weight: 430 g (typ.)
Symbol
Rating
V
1200
CES
V
±20
GES
I
300
C
I
600
CP
I
300
F
I
600
FM
P
2700
C
T
150
j
-40 to 125
T
stg
2500
V
Isol
(AC 1 minute)
¾
3
N▪m
¾
3
1
MG300Q2YS65H
2-109C4A
Unit
V
V
A
A
W
°C
°C
V
2003-03-11
Unit: mm

MG300Q2YS60A Summary of contents

  • Page 1

    TOSHIBA IGBT Module Silicon N Channel IGBT MG300Q2YS65H High Power & High Speed Switching Applications · High input impedance · Enhancement-mode The electrodes are isolated from case. · Equivalent Circuit E1/C2 ( 25°C) ...

  • Page 2

    Electrical Characteristics Characteristics Gate leakage current Collector cut-off current Gate-emitter cut-off voltage Collector-emitter saturation voltage Input capacitance Turn-on delay time Rise time Turn-on time Switching time Turn-off delay time Fall time Turn-off time Forward voltage Reverse recovery time Thermal resistance ...

  • Page 3

    I – 600 450 10 V 300 2700 W 150 Common emitter Tc = 25° ...

  • Page 4

    Switching time – Common emitter 600 ± 25° 125°C 0.01 10 100 Collector current ...

  • Page 5

    – 1600 Common emitter 25°C 1200 800 600 V 400 V 200 V 400 0 0 600 1200 1800 2400 Charge ...

  • Page 6

    RESTRICTIONS ON PRODUCT USE · TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress ...