ATmega1280 Atmel Corporation, ATmega1280 Datasheet - Page 30

no-image

ATmega1280

Manufacturer Part Number
ATmega1280
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega1280

Flash (kbytes)
128 Kbytes
Pin Count
100
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
86
Ext Interrupts
32
Usb Speed
No
Usb Interface
No
Spi
5
Twi (i2c)
1
Uart
4
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
16
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
8
Eeprom (bytes)
4096
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
6
Output Compare Channels
16
Input Capture Channels
4
Pwm Channels
15
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega1280-16AU
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATmega1280-16AU
Manufacturer:
ATMEL
Quantity:
2 990
Part Number:
ATmega1280-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega1280-16AU
Manufacturer:
ATMEL
Quantity:
827
Part Number:
ATmega1280-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega1280-16AU
Quantity:
23
Company:
Part Number:
ATmega1280-16AU
Quantity:
3 600
Company:
Part Number:
ATmega1280-16AU IC
Quantity:
2 700
Part Number:
ATmega1280-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega1280-16CU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega1280-16CUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega1280V-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega1280V-8AU
Quantity:
54
Part Number:
ATmega1280V-8CU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
11.4
11.5
2549NS–AVR–05/11
ATmega1280 rev. A
ATmega1281 rev. B
2. High current consumption in sleep mode
1.
2. High current consumption in sleep mode
1.
2. High current consumption in sleep mode
Inaccurate ADC conversion in differential mode with 200× gain
High current consumption in sleep mode
Inaccurate ADC conversion in differential mode with 200× gain
High current consumption in sleep mode
Problem Fix/Workaround
None.
If a pending interrupt cannot wake the part up from the selected sleep mode, the current
consumption will increase during sleep when executing the SLEEP instruction directly after
a SEI instruction.
Problem Fix/Workaround
Before entering sleep, interrupts not used to wake the part from the sleep mode should be
disabled.
With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may
reach 64 LSB.
Problem Fix/Workaround
None.
If a pending interrupt cannot wake the part up from the selected sleep mode, the current
consumption will increase during sleep when executing the SLEEP instruction directly after
a SEI instruction.
Problem Fix/Workaround
Before entering sleep, interrupts not used to wake the part from the sleep mode should be
disabled.
With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may
reach 64 LSB.
Problem Fix/Workaround
None.
If a pending interrupt cannot wake the part up from the selected sleep mode, the current
consumption will increase during sleep when executing the SLEEP instruction directly after
a SEI instruction.
Problem Fix/Workaround
Before entering sleep, interrupts not used to wake the part from the sleep mode should be
disabled.
Inaccurate ADC conversion in differential mode with 200× gain
Inaccurate ADC conversion in differential mode with 200× gain
ATmega640/1280/1281/2560/2561
30

Related parts for ATmega1280