ATmega165P Atmel Corporation, ATmega165P Datasheet - Page 277

no-image

ATmega165P

Manufacturer Part Number
ATmega165P
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega165P

Flash (kbytes)
16 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
54
Ext Interrupts
17
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega165P-16AN
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega165P-16ANR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega165P-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega165P-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega165PA-AN
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega165PV-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
25.7.9
25.7.10
25.7.11
8019K–AVR–11/10
Programming the Fuse High Bits
Programming the Extended Fuse Bits
Programming the Lock Bits
The algorithm for programming the Fuse High bits is as follows (refer to
Flash” on page 273
1. A: Load Command “0100 0000”.
2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Set BS1 to “1” and BS2 to “0”. This selects high fuse byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. Set BS1 to “0”. This selects low data byte.
The algorithm for programming the Extended Fuse bits is as follows (refer to
Flash” on page 273
1. 1. A: Load Command “0100 0000”.
2. 2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended fuse byte.
4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. 5. Set BS2 to “0”. This selects low data byte.
Figure 25-5. Programming the FUSES Waveforms
The algorithm for programming the Lock bits is as follows (refer to
page 273
1. A: Load Command “0010 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed
3. Give WR a negative pulse and wait for RDY/BSY to go high.
The Lock bits can only be cleared by executing Chip Erase.
RESET +12V
RDY/BSY
(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any
External Programming mode.
PAGEL
XTAL1
DATA
XA1
XA0
BS1
BS2
WR
OE
for details on Command and Data loading):
0x40
A
DATA
C
for details on Command and Data loading):
for details on Command and Data loading):
Write Fuse Low byte
XX
0x40
A
DATA
C
Write Fuse high byte
XX
“Programming the Flash” on
0x40
A
ATmega165P
DATA
C
“Programming the
“Programming the
Write Extended Fuse byte
XX
277

Related parts for ATmega165P