The LPC1759 is a Cortex-M3 microcontroller for embedded applications featuring a high level of integration and low power consumption at frequencies of 120 MHz

LPC1759FBD80

Manufacturer Part NumberLPC1759FBD80
DescriptionThe LPC1759 is a Cortex-M3 microcontroller for embedded applications featuring a high level of integration and low power consumption at frequencies of 120 MHz
ManufacturerNXP Semiconductors
LPC1759FBD80 datasheet
 


1
Page 1
2
Page 2
3
Page 3
4
Page 4
5
Page 5
6
Page 6
7
Page 7
8
Page 8
9
Page 9
10
Page 10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
Page 2/74

Download datasheet (2Mb)Embed
PrevNext
NXP Semiconductors
Multilayer AHB matrix interconnect provides a separate bus for each AHB master.
AHB masters include the CPU, General Purpose DMA controller, Ethernet MAC
(LPC1758 only), and the USB interface. This interconnect provides communication
with no arbitration delays.
Split APB bus allows high throughput with few stalls between the CPU and DMA.
Serial interfaces:
On the LPC1758 only, Ethernet MAC with RMII interface and dedicated DMA
controller.
USB 2.0 full-speed device/Host/OTG controller with dedicated DMA controller and
on-chip PHY for device, Host, and OTG functions. The LPC1752/51 include a USB
device controller only.
Four UARTs with fractional baud rate generation, internal FIFO, and DMA support.
One UART has modem control I/O and RS-485/EIA-485 support, and one UART
has IrDA support.
CAN 2.0B controller with two (LPC1759/58/56) or one (LPC1754/52/51) channels.
SPI controller with synchronous, serial, full duplex communication and
programmable data length.
Two SSP controllers with FIFO and multi-protocol capabilities. The SSP interfaces
can be used with the GPDMA controller.
Two I
multiple address recognition and monitor mode.
On the LPC1759/58/56 only, I
output, with fractional rate control. The I
GPDMA. The I
receive as well as master clock input/output.
Other peripherals:
52 General Purpose I/O (GPIO) pins with configurable pull-up/down resistors. All
GPIOs support a new, configurable open-drain operating mode. The GPIO block is
accessed through the AHB multilayer bus for fast access and located in memory
such that it supports Cortex-M3 bit banding and use by the General Purpose DMA
Controller.
12-bit Analog-to-Digital Converter (ADC) with input multiplexing among six pins,
conversion rates up to 200 kHz, and multiple result registers. The 12-bit ADC can
be used with the GPDMA controller.
On the LPC1759/58/56/54 only, 10-bit Digital-to-Analog Converter (DAC) with
dedicated conversion timer and DMA support.
Four general purpose timers/counters, with a total of three capture inputs and ten
compare outputs. Each timer block has an external count input. Specific timer
events can be selected to generate DMA requests.
One motor control PWM with support for three-phase motor control.
Quadrature encoder interface that can monitor one external quadrature encoder.
One standard PWM/timer block with external count input.
Real-Time Clock (RTC) with a separate power domain and dedicated RTC
oscillator. The RTC block includes 20 bytes of battery-powered backup registers.
WatchDog Timer (WDT). The WDT can be clocked from the internal RC oscillator,
the RTC oscillator, or the APB clock.
ARM Cortex-M3 system tick timer, including an external clock input option.
LPC1759_58_56_54_52_51
Product data sheet
LPC1759/58/56/54/52/51
2
C-bus interfaces supporting fast mode with a data rate of 400 kbit/s with
2
S (Inter-IC Sound) interface for digital audio input or
2
S-bus interface supports 3-wire and 4-wire data transmit and
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 29 March 2011
32-bit ARM Cortex-M3 microcontroller
2
S-bus interface can be used with the
© NXP B.V. 2011. All rights reserved.
2 of 74