The TPS54040 device is a 42-V 0

TPS54040-Q1

Manufacturer Part NumberTPS54040-Q1
DescriptionThe TPS54040 device is a 42-V 0
ManufacturerTexas Instruments
TPS54040-Q1 datasheet
 


Specifications of TPS54040-Q1

Iout(max)(a)0.5Vin(min)(v)3.5
Vin(max)(v)42Vout(min)(v)0.8
Vout(max)(v)39Iq(typ)(ma)0.116
Switching Frequency(max)(khz)2500Switch Current Limit(typ)(a)0.6
TopologyBuck,Inverting Buck-BoostOperating Temperature Range(c)-40 to 125
Pin/package10MSOP-PowerPAD, 10SONDuty Cycle(max)(%)95
Regulated Outputs(#)1  
1
2
3
4
5
6
7
8
9
10
11
Page 11
12
Page 12
13
Page 13
14
Page 14
15
Page 15
16
Page 16
17
Page 17
18
Page 18
19
Page 19
20
Page 20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
Page 14/51

Download datasheet (2Mb)Embed
PrevNext
TPS54040-Q1
SLVSA26C – JANUARY 2010 – REVISED AUGUST 2011
DETAILED DESCRIPTION (continued)
Attention must be taken in maximum duty cycle applications which experience extended time periods with light
loads or no load. When the voltage across the BOOT capacitor falls below the 2.1V UVLO threshold, the high
side MOSFET is turned off, but there may not be enough inductor current to pull the PH pin down to recharge the
BOOT capacitor. The high side MOSFET of the regulator stops switching because the voltage across the BOOT
capacitor is less than 2.1V. The output capacitor then decays until the difference in the input voltage and output
voltage is greater than 2.1V, at which point the BOOT UVLO threshold is exceeded, and the device starts
switching again until the desired output voltage is reached. This operating condition persists until the input
voltage and/or the load current increases. It is recommended to adjust the VIN stop voltage greater than the
BOOT UVLO trigger condition at the minimum load of the application using the adjustable VIN UVLO feature with
resistors on the EN pin.
The start and stop voltages for typical 3.3V and 5V output applications are shown in
The voltages are plotted versus load current. The start voltage is defined as the input voltage needed to regulate
the output within 1%. The stop voltage is defined as the input voltage at which the output drops by 5% or stops
switching.
During high duty cycle conditions, the inductor current ripple increases while the BOOT capacitor is being
recharged resulting in an increase in ripple voltage on the output. This is due to the recharge time of the boot
capacitor being longer than the typical high side off time when switching occurs every cycle.
4
3.8
3.6
Start
3.4
Stop
3.2
3
0
0.05
0.10
I - Output Current - A
O
Figure 26. 3.3V Start/Stop Voltage
Error Amplifier
The TPS54040 has a transconductance amplifier for the error amplifier. The error amplifier compares the
VSENSE voltage to the lower of the SS/TR pin voltage or the internal 0.8V voltage reference. The
transconductance (gm) of the error amplifier is 97μA/V during normal operation. During the slow start operation,
the transconductance is a fraction of the normal operating gm. When the voltage of the VSENSE pin is below
0.8V and the device is regulating using the SS/TR voltage, the gm is 25μA/V.
The frequency compensation components (capacitor, series resistor and capacitor) are added to the COMP pin
to ground.
Voltage Reference
The voltage reference system produces a precise ±2% voltage reference over temperature by scaling the output
of a temperature stable bandgap circuit.
Adjusting the Output Voltage
The output voltage is set with a resistor divider from the output node to the VSENSE pin. It is recommended to
use 1% tolerance or better divider resistors. Start with a 10 kΩ for the R2 resistor and use the
calculate R1. To improve efficiency at light loads consider using larger value resistors. If the values are too high
the regulator will be more susceptible to noise and voltage errors from the VSENSE input current will be
noticeable
14
5.6
V = 3.3 V
O
5.4
5.2
5
4.8
4.6
0.15
0.20
0
Figure 27. 5.0V Start/Stop Voltage
Copyright © 2010–2011, Texas Instruments Incorporated
www.ti.com
Figure 26
and
Figure
V = 5 V
O
Start
Stop
0.05
0.10
0.15
0.20
I - Output Current - A
O
Equation 1
27.
to